
©

ct3

cU ¸
©

_===_

©
C2

!

NASA-CR-].93289

DEPARTMENT OF COMPLrI_R SCIENCE

COLLEGE OF SCIENCES
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

DEVELOPMENT OF A CASE TOOL TO SUPPORT
DECISION BASED SOFTWARE DEVELOPMENT

By

Christian J. WiId, Principal Investigator

Annual Progress Report

For the period ended March 31, 1993

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-l-1426

Dr. Dave E. Eckhardt Jr., Technical Monitor

ISD-Systems Architecture Branch

(NASA-CR-193289) DEVELOPMENT OF A

CASE TOOL TO SUPPORT DECISION BASED
SOFTWARE DEVELOPMENT Annual

Progress Report, period ending 31

Mar. 1993 (01d Dominion Univ.)
151 p

G3/61

July 1993

/-/.,,

N93-31738

Unclas

01755Z5



DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

DEVELOPMENT OF A CASE TOOL TO SUPPORT

DECISION BASED SOFTWARE DEVELOPMENT

By

Christian J. Wild, Principal Investigator

Annual Progress Report

For the period ended March 31, 1993

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-l-1426

Dr. Dave E. Eckhardt Jr., Technical Monitor

ISD-Systems Architecture Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

July 1993



Table of Contents

1. Introduction

2. Meetings with P,'uarnax personnel

3. Paper describing the DBSD paradigm _md presentmion for Software Reuse Workshop

4. Issues in solving the software reengineering problem

4.1. The problem

4.2. The aproach

4.2.1. Alternatives

4.2.2. Upgrading DHC

4.2.3. Ch,'u't of problem space

4.3. Process Model

4.4. Ev,'duation Process

4.5. Market Study done at Paramax

5. Attachments

5.1. Paper ,and Viewgraphs describing DBSD paradigm, viewgraphs of the reusability
presentation

5.2. Process model for porting

5.3. Meeting notes

5.4. Chart representing the problems envolved by the reengineering process

5.5. Printout of the problem and decision spaces for the reengineering process

5.6. Process model for traditional life cycle of software

Notations specific to DHC

5.7. Logging form



1. Introduction

This report presents a summary of the accomplishments of this research group over the

past one year.

In accordance with our proposal, the achievements of this period of time are:

- made demonstrations with DHC, a prototype supporting DBSD methodology, for

Paramax personnel at ODU; met with Paramax personnel on a regular basis to discuss

DBSD issues, the process of integrating DBSD and Refinery and the porting process

model (see also Attachment 3 ).

- completed and submitted a paper describing DBSD paradigm to IFIP '92, Spain,

which was accepted and presented; completed and presented a paper describing our

approach for software reuse at the Software Reuse Workshop held in April 93 in

Washington, D.C.(see also Attachment 1)

- continued to extend DHC with a project agenda, facility necessary for a better project

management.

- completed a primary draft of the re-engineering process model for porting, defined at

the requirements level for Paramax re-engineering problem( see attachment 2 and 6).

- created a logging form to trace all the activities envolved in the process of solving the

reengineering problem (see also Attachment 7).

- according to our discussions with the Paramax personnel we have developed a primary

chart with the problems envolved by the reengineering process ( see Attachments 3, 4,

5).

2. Meetings with Paramax personnel

In this period of time we have met with Paramax personnel on a regular basis to discuss

DBSD issues, the process of integrating DBSD and Refinery and the porting process

model and we made demonstrations for them with DHC, a prototype supporting DBSD

methodology (see also Attachment 3 ). Also, Tammy Taylor (Paramax) demonstrated

Refinery for the ODU team.

3. Paper describing DBSD paradigm

We completed and submitted a paper describing DBSD paradigm to IFIP '92

Conference, Spain, which was accepted and presented. We also completed and

presented a paper describing our approach for software reusability at the Software

Reuse Workshop held in April '93 in Washington, D.C.(see also Attachment 1).



4. Issues in solving the software re--engineering problem

4.1. The Re--engineering Problem

Paramax desires a reengineering capability to address the following scenarious:

- port applications from one machine to another.

- translate an existing application on a source machine to an application in a new

language, machine independent so that they can have a kernel version of an application

which runs on several platforms.

- enhance the features of an application, extract the best features from several versions

of a given software system and create one kernel version.

They will need support for both porting and reverse porting processes since they want to

keep consistent the 2 versions of a program that has been ported.

4.2. Approach

4.2.1. Alternatives

To address these problems we can adopt one of the following alternatives:

- build solution from scratch, develop a fully automated, noninteractive system for

specic cases.

- develop an expert system using only DHC.

- integrate DBSD and Refinery into a Unified Environment.

- adopt some other non-automated tools suited to our purposes(like UNIX "awk', for

example).

We have decided to adopt the alternative of integrating DBSD and Refinery, since in

house and local capability exists and Refinery may allow for significant automation

through use of transformation rules, DBSD creating the environment for recording the

methodology of the processes performed and the decisions taken during the

development of these processes.

For this integration of DBSD and Refinery we see two possibilities:

- make them loosely coupled, seeing each other like a black box that executes its job

sequential in time with respect to the other tool.

- make them tightly coupled, i.e. embed DHC in Refinery or viceversa. For this case we

need a deep understanding of the source code, capabilities and functions of Refinery. We

would like to have answers from Paramax to the following questions that would help us

to figure out the final approach of this problem:

- which are the capabilities and functions of Refine'? Are they noninteractive so they can

be wrapped into DHC functions, are they sufficiently small to be embedded?

- how is the precision of decision structure maintained through the Refinery

transformation'?



Up to nowwehavedevelopedthelooselycoupledversion,choosingthesimplewayof
porting,in orderto betterunderstandtheprocess.

Forexample,if wewantto portanapplicationfrom Harristo HoneywellorMicrofocus
Cobol,or Honeywellto Harrisor MicrofocusCobol,oneshouldperformthefollowing
steps:
- selectsampleHarriscode
- selectfunctionallyidenticalHoneywellcode
- parseHarriscodeintoRefineobjectbase,generatinganAbstractSyntaxTree(ASTI)
- parseHoneywell code into Refine object base,generatingan Abstract Syntax
Tree(AST2)
- performmanualcomparisononprogramsandcomponents
- isolateproblemareas:

- areaswherethereis noone-to--onetransfer
- overlappingof functionalmodularity.

- developRefinecodeto convertHarrisCobolto HoneywellCobol
- developRefinecodeto convertHoneywellCobolto HarrisCobol
- developRefinecodeto convertHarrisCobolto MicrofocusCobol
- developRefinecodeto convertHoneywellCobolto MicrofocusCobol
- performmanualcompletionof theconversionin eachof theabovecases
- use DBSD for recording methodologyand the decisionstaken during the
developmentprocess.

In the developmentprocessone might find decisionviews attachedto the original
source,decisionviewsattachedtothetransformationrulesor decisionviewsattachedto
thetargetsource.Thelatestmightincludedecisionviewsattachedtotheoriginalsource,
decisionviews attachedto untransferedcode,decisionviews attachedto new code
generatedduring transformationprocess,mappingof decision views attachedto
transformationrulesto thetargetcode.In orderto beableto distinguishamongthis
diversityof decisionviewsweneedtodevelopin DHCamechanismfor "filtering" the
views.

4.2.2. Upgrading DHC

In developing the solutions for the reengineering problem we began to recognize the

importance of managing problems which are in a state of transition. Problems which

have not been fully integrated into the document base must be kept visible. A project

agenda is used to record the state of all problems under active development. This project

agenda may contain tentative alternate solutions to problems from which an assessment

can be made. Once a commitment is made, the chosen solution can be linked into the

document base. So, problems which have been identified but not yet solved are kept in

the project agenda. Project managers use the information in the project agenda to



allocateresourcesto solvetheseproblems.Focusingon this processinsteadof the
productsof developmentallowsmanagementto controltheschedulingof activities.

4.2.3.The chart of the reengineering problem space

According to our discussions with the Paramax personnel we have developped a

primary chart with the problems envolved by the reengineering process ( see

Attachments 3, 4, 5). It contains the graphical equivalent of the problem and decision

spaces. The problems in the chart are indexed by the number in the DHC.pd file (the

problem description file). It includes the problems, alternatives and output of the

problems, linked together by decision, justification, alternate and output links.

4.3. Process Model

In the referred period of time we have concentrated our efforts in creating a primary

draft of the re-engineering process model for the porting problem, in order to better

understand it. We have decided to write separate methodologies for porting, enhancing

and translating because the process is too little understood to fully develop a general

methodology for everything. This process model addresses the activities and their input

and output used in creating and using the information necessary to the problem solving.

By writing an explicit process model, the roles of different members of the software

engineering team and management is clarified. In addition, it is possible to identify

desirable functionality for the software engineering environment.

We have attached the primary draft of the porting problem (Attachment 2) and the

DBSD process model for the traditional life cycle (Attachment 6), as well as the

notations used in these two process models.

4.4. Evaluation Process

In order to evaluate the conditional decisions during the process of solving the porting

problem we have created a logging form that will help us to keep a notebook of

activities, tools used, features applied, the time spent in each activity as well as the

products of each activity (see Attachment 7).

All this information will be applied to a statistical analizer that will help us to figure out

the frequency , duration of each feature, the size of various parts of

documentation(decisions, transformation rules, source code, BNF rules, etc.), amount

of new parts vs. changes in existing ones in the dynamic process of this problem solving.

4.5. Market Study done at Paramax

In order to complete our research and document preparation, we need answers to several

questions which are listed below. These questions represent concerns about the market

which Paramax is serving and expected market conditions for the future. This will assist

us in defining our reengineering model and associated activities. We request Tammy



TaylorfromParamax/VirginiaBeachtogathertheanswerstothesequestionsortoputus
in touchwith theappropriatepersonnelthatcanprovideustheguidancenecessaryto
proceed.

1. DoesParamax/V'trginiaBeachandParamax/Corporatehavecontractsfor porting
softwarefrom oneplatform to another? If so,how manyandto whatextent'?For
example,a. How big are thecontractsto port in termsof linesof code? b. What
languagearetheyin'?c. Whatis thevalueof thecontracts?d. Whatsolutionsto these
problemshavebeenusedin thepast?e. Whatproblemshavebeenencounteredwith
thesesolutions'?

2. In portingsoftware,is therequirementaoneto oneport? Meaning,areyou tojust
move thesoftwareasit standsandprovidethenecessarymechanismfor runningin
anotherenvironment?If so,oncetheportiscomplete,will youbecontractedtoenhance
portedsoftwarein thenewenvironment'?If not,what is theexpecteddurationof the
portedsoftwareonthenewmachine?(i.e.will it beredevelopedfromscratchin thenew
environment?etc.?)

3. How oftendoyouforeseeperformingsoftwareporting?softwaretranslationg?and
softwareenhancementsin the foreseeablefuture'? Anotherwords,what is your
predictedbussinessdirection'?

4. WhatimpactdoestheDepartmentof Defense(DOD)havein yourbusinessgoals?

5. WhatdoestheDODmeanbyreuse/reengineering?AreyousolelydrivenbytheDOD
requirements'?

6. Whatarethecharacteristicsof reuse'?

7. Whatarethecharacteristicsof reengineering?

8. What typesof softwaresystemsdo you envisionthe DOD wanting to perform
reuse/reengineeringon'?

9. Whatarethestrategiesof DODfor theforeseeablefuture'?

10.WhatrelationdoesICASEplay in thosestrategies'?



ATTACHMENT # 1

Paper and viewgraphs

describing DBSD paradigm



Software Life Cycle Support - Decision Based Software Development

Chris Wild and Kurt Maly

Department of Computer Science,
Old Dominion University, Norfolk, VA 23529-0162 USA

Abstract

The software engineering life cycle encompasses a broad range of activities from the initial

elicitation of the system requirements to the continuing evolution of the operational system. These

activities can be best supported if there is a unifying paradigm which can integrate functional and
non-functional problem-solving, process management, and knowledge acquisition and reuse. The

Decision Based Software Development (DBSD) paradigm structures the software development and

evolution process as a continuous problem-solving and decision making activity. In the DBSD

paradigm, the software engineering team identifies and articulates software development problems,

proposes alternative solutions, develops supporting justifications from which a decision is made. By

making the problem solving process visible, DBSD allows management to control the creative, and

sometimes chaotic, set of activities comprising software development. By recording the decisions,
decision making rationale and the relationships among decisions and between decisions and the prod-

ucts of software development, the source code and related documents are structured significantly
different from traditional structures such as the modular or data flow view. This structure asso-

ciates a decision with only those parts of the documents affected by that decision. These decision
views support continued evolution of the software system because both the rationale for individual

decisions are recorded as well as the interrelationships among decisions. Documenting these interre-

lationships helps the software engineer assess the impact of changing a decision and to understand
the consistency requirements among a set of decisions.

Keyword Codes: D.2.0; D.2.2; D.2.7; D.2.9

Keywords: Software Process; Software Maintenance; Engineering Design

1 Software Development Problem

The engineering of large systems is a complex undertaking which requires sound technical methods

and careful project management. In order to make significant progress in improving software creation
and maintenance, a better understanding of, and support for, the development process will be

necessary. By focusing on the software products most approaches to software development do not

adequately support the design process itself. Non-functional requirements are poorly represented

by the current software engineering structures. We believe that supporting the design process
will require a fundamentally different development pare/digm which addresses the entire systems

development life cycle. In this paper, we describe the Decision Based Software Development (DBSD)

paradigm for systems life cycle support.

A good software engineering methodology should provide knowledge sources, reasoning agents
and process management. The purpose of documentation is to capture knowledge for later reuse. In



addition,projectknowledgeiscontainedin themindsofthesoftwareengineeringteam.Reasoningis
carriedbythemembersofthesoftwareengineeringteam.Thisreasoningcanbeassistedandinsome
casesreplacedbysoftwareengineeringtools.Theprocessdescribeshowknowledgeiscreatedand
usedduringthedevelopmenteffort.It dealswith themanagementof theknowledgeandreasoning
resources.

It is ourviewthatautomatingtheprojectknowledgebasewill providethegreatestnearterm
leverageforaddressingsoftwareengineeringproblems.Existingdocumentbasessufferfromtwoma-
jor deficiencies.First,notallthecriticalinformationiscontainedin thedocumentbase.Traditional
documentstypicalonlyrecordtheresultsof theproblemsolvingprocessin termsof theparticular
solutionstakenandonlyif thissolutionresultsin avisibleproductor deliverable.Muchof theun-
derstandingandjustificationsformakingparticulardecisionsexistsonlyin themindsoftheoriginal
developer.Thisinformationconsistsof relationshipsbetweendifferentrequirementswhichrequire
tradeoffsto bemade,promisingdevelopmentpathsthat laterprovedto bedead-endsandalterna-
tivepathsthatcouldleadto abettersolutionif moreresourceswereavailableto pursuethem.The
personwhosubsequentlyusesthedocumentbaseto makechanges,mustbeabletoreverseengineer
thismissinginformation.Thesecondproblemisthat theorganizationofthedocumentbasemay
notsupporteasyaccessto relevantinformationthat iscontainedthereasit isneeded.At thevery
least,moreeffortisexpendedto locatethis information.In theworstcase,thisinformationmust
bereverseengineered.Reverseengineeringcriticalinformationis bothtimeconsuminganderror
proneandcontributessignificantlyto thesoftwareproblem.

Thecontentandorganizationof theprojectdocumentbasethusplaysa criticalrolebothin
guidingtheinitial developmentandsupportingsystemevolution.Duringtheprocessof software
developmentthesoftwareengineerneedsaccessto onlyaselectedsubsetof informationfromthe
documentbase.Thesubsetofinformationneededto performaparticulartaskiscalledtheclosure
of that task. Theideal closurecontainsexactlythe informationthesoftwareengineerrequires
to performthetask.Theactual closurerefersto thatsubsetof informationwhichthesoftware
engineercanretrievefromaparticulardocumentbase.Theactualclosureis determinedby the
organizationof thedocumentbase,thesetof informationretrievaltoolsavailable,andtheprocess
usedto buildtheclosure.Muchoftheeffortonstructuredprogramminghasbeento organizethe
programtextanddevelopmentprocesstosupportclosurebasedonmodularstructureandfunctional
abstraction.

The documentbaseshouldbeusedto supportthedevelopmentprocess.This impliesthat
thedoct/mentbasecontainmorethanthefinalproductsof eachphaseof the life cycle.In order
to supporttheearlyphasesof development,thedocumentbasemustrecordtheproblemsolving
process,evenif therelationshipsbetweentheseproblemsandthefinalproductsis notyet clear.
Thedevelopmentprocessmustallowforeasyevolutionandmaintenanceof thedocumentbase.In
additionthedocumentationeffortshouldnotplaceanundueburdenonthedevelopers.Information
that iseasyto reverseengineer,neednotbeincludedin thedocumentbase.It shouldbeeasyto
addmissingdocumentationandto correcttheinconsistencyofexistinginformation.

2 A New Approach: Decision Based Software Development

The Decision Based Software Development(DBSD) Paradigm has been proposed to support the

process of software creation and evolution. DBSD belongs to the school of thought that the devel-

opment process can be modeled as a set of related problem solving episodes [?, ?, ?, ?].
Organizing the document base and the development process around problem solving and decision

making is more general than using data flow, top down design, module decomposition, object oriented

design or other structured methods. Problem solving is a universal activity which spans the life cycle.

For example, many of the decisions in determining the requirements are based on weak justifications

or are made without a full understanding of their consequences. Documenting the decision made

during the requirements definition would help the designers understand which requirements are firm
and which could be revised in order to build a better or cheaper design.



Example1 A system requirement stipulates a response time under three seconds for 90_ of the

transactions under worst case loading. Providing the resources to meet this requirement may be

wasteful if the worst case load occurs eztremely rarely or if the three second limit was chosen arbi-

trarily.

Both functional and non-functional requirements involve problem solving. Non-functional problem

solving receives very little attention in most software development approaches. Many of the solutions

to non-functional problems do not directly result in software products but the provide the constraints
under which software products are developed. The response time requirement described in the

above example may be the proposed solution to the problem of keeping the user attention and

reducing frustration, but it does not in itself produce code. It does, however, affect the choice of
data structures, algorithms, overall software and hardware architecture and hardware performance

requirements. Additionally, problem solving is process oriented. Since engineering involves many

tradeoffs, there will be times when earlier decisions will have to be changed. Documenting the effects

of these decisions will ease the burden of making these changes both during initial development and

system evolution.

Recording the decisions and structuring the document base by these decisions has an additional
advantage. In initial development, focusing on the identification of problems, alternate solutions and

justifications provides structure into what is a creative but often unstructured process. The status

of the progress among all problems is recorded. If a problem has been solved, the decision and its

justification is recorded together with all its effects. Problems which have been identified but not yet

solved are kept in the project agenda. Project managers use the information in the project agenda

to allocate resources to solve these problems. Focusing on this process instead of the products of

development allows management to control the scheduling of activities.

The primary advantage to recording the decision structure of a project comes forth during soft-

ware maintenance. If the software contains a fault it is because at some stage in the problem solving

process a faulty solution was chosen. If a solution leads to poor performance, then the decision
which choose that solution must be revisited and an alternate solution should be chosen. When

adding new functions to a system, the documentation of decisions will help the software engineer

decide which solutions can be reused. Another advantage of relating documentation to decisions is

when decisions are changed, those parts of the document base which are affected by that decision

are more easily accessed and updated. This helps address the problem of keeping the documentation
up to date.

The problem solving model is in contrast to the transformational model of development in which

an initial abstract document describing the system is transformed into an efficient operational system.

One of the problems not addressed in transformational system is how the initial system description

is generated. The basic problem solving process involves the following steps:

1) Identification and articulation of the problem to be solved.

2) Generation of alternate potential solutions.

3) Validation and Justification. Before a proposed solution can be adopted, it must be validated

as a feasible solution and its choice among all the feasible solutions must be justified. This
justification is done in the context of other decisions and constraints.

4) Commitment. If there are several alternate solutions, then a decision must be made. This
decision is justified both by the quality of the solution and by the context in which the decision
is made.

Because a solution to a problem may itself constitute a subproblem, the process of problem solving
is recursive.

DBSD introduces new information structures into the project document base as shown in Fig.

??. The decisions are listed on top with the links to the relevant problems visible. In this figure we

have organized the document base according to the traditional life cycle and hence have grouped



13---

Decision Structure View.of Document Base

R_uiremcnt ',, Specification " Architectural ,'" Detail Design

." De.sign '

,° oe

0o, "

Legend

View Link

Justification

Dependency

Decision

AIt. Link

Alternate

,---.,
Problem

Decision

[]
View

Figure 1: Decision Based Software Documentation

decisions into requirement decisions, specification decisions, etc. However, the DBSD paradigm is

independent of the software development methodology used and this particular grouping is only for

illustration. Since solutions to one problem may require further problem solving themselves, decision

structures are linked together by a problem/solution dependency link. If a decision structure

references or defines an artifact described in the software document base, a linkage between them

is made. The decision structure provides a view of the document base which support the problem

solving process. We call this view of the software document base the decision view.

Since design involves a careful consideration of tradeoffs among alternatives, decisions are typi-

cally made in the context of existing decisions, solutions, and policies. Justification links provide

the context of solutions and other problems in which a decision is made. The structuring provided

by decisions does not necessarily correspond to the normal presentation structure of a document.

The Presentation Structure of a document is the organization traditionally used to present the doc-

ument. This structure may be dictated by documentations standards which detail which sections

must be present, their contents and relative order or by document processing programs (such as the

compiler or document preparation tools). The view of a decision may be scattered throughout a doc-

ument(s) impacting many parts of it. In addition, several decisions may impact the same part of the

document. As shown in the figure, several decision views may overlap. Through the problem solving

graph, one can trace from any document back through the relevant problems to a requirement. Or

one can trace from a problem to its solution, expressed perhaps as the lines of code which implement

a solution to that problem. Since requirements, specifications and design documents represent a so-

lution at some level of abstraction, the problem solving graph provides a view of those documents.

Also some of the final solutions are not programs. Users manuals and operations guides are part of

the system solution and can be in the view of decisions. This figure indicates the generality of the

DBSD paradigm. All phases of the life cycle can be viewed as problem solving from the generation

of the initial requirements to the source code. In fact, DBSD encompasses other design activities



as well. We have applied the DBSD paradigm to the development of its process model.

In order to gain a better understanding of how DBSD paradigm can be applied to software

development and maintenance, a prototype DBSD support system, called D-HYPERCASE , has

been developed. D-HYPErtCAsE is described in [?].

3 Process Modeling

Since problems can arise at any time during development, fitting them into a problem space is

not predetermined. The organization of this space and the resulting structure of the final software

system is not given and will depend on how decision making is managed. For example the Spiral
Model of software development [?], focuses on the high risk problems first which provides the context

in which less risky problems are solved. Incremental Build delivers a system as a series of products

with increasing functionality where later versions build upon decisions made during the earlier
versions. We believe that DBSD is a fundamental paradigm which can be incorporated into diverse

engineering methodologies. In order to better understand how to utilize DBSD we have developed

a general process model for it. This process model does not prescribe the order in which decisions
are made nor the set of documents produced. This process model addresses the kind of information

to produce and the activities used in creating and using this information. By writing an explicit

process model, the roles of different members of the software engineering team and management is

clarified. In addition, it is possible to identify desirable functionality for the software engineering
environment.

In developing the process model, we began to recognize the importance of managing problems

which are in a state of transition. Problems which have not been fully integrated into the document

base must kept be visible. A project agenda is used to record the state of all problems under

active development. This project agenda may contain tentative alternate solutions to problems
from which an assessment can be made. Once a commitment is made, the chosen solution can be

linked into the document base. In recognition that software development is an on going problem

solving activity, it is often possible to identify those decisions which are likely to be revisited after

deployment. One of the major insights in developing the process model for DBSD is development

of a active role for planned maintenance in the design decision making process. Because decision

making is often hindered by lack of experience or limited ability to judge the appropriateness of a
solution, many solutions will be sub-optimum or unworkable. Since in a complex system there will

be many decisions which will impact the overall performance either favorably or adversely, it can be

quite difficult to assign credit or blame to individual decisions. We propose that decisions supported

by weak justifications be validated by instrumenting the solution to collect data which will support

or refute the decision - a process we refer to as the DIRE (Decide, Instrument, Re-Evaluate)
method of problem solving.

Example 2 In a previous ezample, the response time under a worst case load was required to be

under 3 seconds for #0_ of the transactions. In order to validate or refute the worst case scenario, the

system could be instrumented to collect watershed statistics. These statistics can help give insight into

the nature and probability of worst case behavior. Subsequent decisions which affect this requirement
can now be more informed.

The process model provides for management of the development team through a series of activ-
ities. In our model the activities include

• identification of new problems.

• interaction with the software engineering environment to understand a problem and its constrain-
ing context,

• assessing different methods of solution including reuse of existing solutions

• review of proposed solutions in a decision review meeting

• update of the project document base including problems in process



• allocationofresourcesby management to the solutionof activeproblems

• implementation of committed solutions

4 Experience

The original concepts of the DBSD paradigm were developed as a result of a set of experiments

in performing maintenance tasks on a moderate sized production Navy application program. Since

these initial experiments, we have built two Software tools supporting the DBSD paradigm. We

have also developed a general process model for DBSD. To the degree it was practical all these
efforts were developed using the DBSD paradigm. The following is a summary of what we learned

from these experiences. More details can be found in earlier publications [?, ?, ?].
• We found the reusability often relates to solutions to problems which result in code fragments

scattered through the modular structure. This particularly true if the solutions are heavily impacted
by non-functional considerations.

• The time spent in understanding an existing system consumed the major portion of the effort

during maintenance tasks (we measured about 80%). Furthermore, understanding the non-technical

reasons why certain solutions were taken were the most difficult to reengineer.
• The first software tool was built using a graphical hypertext system developed at Old Dominion

University. This system was extensively modified in adapting it to our project. The decisions

structure for the original software was reverse engineered by one of the original systems designers.

In order to assess the value of DBSD in this effort, a set of metrics were developed to measure the

differences between the ideal and actual closures. An abstraction metric [?] measures the size of

the document base associated with a viewpoint. Examples of viewpoints are decisions, modules or
function points. The number of viewpoints which must be understood in order to perform a task

defines a related metric called the task abstraction metric. A set of precision metrics measures the

difference between the actual and ideal closures (percentage of actual closure not in the ideal and

percentage of the ideal closure not in the actual). During this initial development data was manually

collected to measure precision and abstraction. These preliminary results [?] indicate that by using
the decision view instead of a functional view of the software, the software maintainer would be able

to find the relevant parts of the document base more precisely using fewer abstractions (by a factor
of 2 to 5).

• Removal of obsolete code would be easier using the decision view than a functional view of the
source code document. We believe the same would hold for other forms of documentation as well.

• We do not expect that it is possible to develop a perfect decision structure. An unstated problem

or assumption will of course not result in a decision structure. The penalty for changing a system

with unstated decision is that they will have to reverse engineering during the understanding and
impact analysis. However once articulated, there is a rapid growth in the precision of the decision

structure with respect to the new and future related changes. This restructuring is much easier than

that which would be required by restructuring an inappropriate modular structure for a system.

• Tile last observation on the ability to grow and modify the decision structure suggests that it
should be possible to apply the DBSD method to existing software systems.
• The additional effort to document the decision structure was measured at an additional 10% in

keystrokes entered. This reflects the decision to automatically associate the primary decision with

the document as it is initially entered ( that is, the software engineer, first identifies the problem

they are working on, then edits the document base. All new entries are automatically associated
with the current decision). We believe audio data entry would reduce the effort even further.

• The process model described in [?] is our third experience with DBSD. This effort further shows

the generality of the DBSD approach. The process model deals primarily with management issues.
We are currently building a third system which incorporates additional support for the process

model. In particular, this system will have project agenda management and will help build and
assess the closure of a maintenance task.



5 Conclusions

The Decision Based Software Development Paradigm offers a new approach to developing and main-
taining complex software systems. In this approach, the process is organized around the problem

solving activity rather than the product structure. Our research into the DBSD paradigm has

addressed the organization of the document base, the functionality of a Software Engineering En-
vironment and a process model to support it. It provides a different structure of the document

base which is related to the process which creates and maintains it. This model supports decision

validation based on tile Decide, Instrument, Re-Evaluate (DIRE) paradigm in which the software
system is instrumented to collect data to validate or refute decisions which are weakly justified. Our

experiences with the DBSD paradigm indicate that it is sufficiently general to provide life cycle
support for complex software systems.



Software Life Cycle Support:

Decision Based Software Development 1

Chris Wild Kurt Maly

Tammy Taylor Daniella Rosca Jing-Yuan Zhang

Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

1Work sponsored by grants NAG1-439, NAG1-966 from NASA Langley Rcsearch Cen-

tcr and grant CIT INF-92-008 from Virginia's Center for Innovative Tcchnology



IFIP - September 1992

OUTLINE

• Background

• Decision B_ed Approach to Software Dcvelopment and

Maintenance

• D-HyperCase: Prototype Implementation

• Process Model for DBSD

• Discussion

• Conclusions



m

Software System

Creator's Knowledge Base

()
%

Creator

Document Base

Structures
""\ Functions r/

I
\

\_ / Behaviours

/"----/'-J l

Design Rational_

U/M Knowledge Base

/

User/Modifier

Decision-Based Software Development • Design and Maintenance Old Dominion University



[FIP - September 1992

What are the Problems?

PROBLEM: Most Documentation Fails to Support

Process -

Document After the Fact, Largely Irrelevent.

the

PROBLEM: Functionally Oriented Software Engineering

Methods -

Poor Support for Non-Functional Requirements Resolu-

tion.

• PROBLEM: Structured Methods Oriented Arolmd Prod-

ucts -

Early Stages of Life Cycle, Policy _[aking. Style Concerns

Ignored.

• PROBLEM: Rigid Structures -

Reusability and Evolution Constrained.



IFIP - September 1992 5

Decision Based Software Development

=> Model the Process of Software Development and Evolution

as a Set of Interrelated Problem Solving Episodes.

=> Record Decisions .Made and Their Relationships to Other

Decisions and to the Products of Software Development.

Why Problem Solving?

• Supports Process Across Life Cycle

• Supports Non-functional Requirements Resolution

• Process Oriented

Why Record Decisions

• Decision Rationale Difficult to Reverse Engineer

• Record Promising Alternate Solutions and Dead Ends

• Engineering is Trading Off Decisions

• Software Maintenance is Changing Decisions



I

Requirement

/
/

/
I

Decision Structure View,of Document Base
_ I

• Specification , Architectural ," Detail Design
I

, ,' Design '
I a #

e #

e #

p

e_ °°

, s ' ," l*_i ]

Req. doc

,'///;/X>

// / , /_
/.'fi1"/tf

I

I

o

Design doc.:

,;////,>.

Source

user

\ manual
\

\

/';,'X./;,

Legend

View Link

Justification

Dependency

Decision

Air. Link

..... ),,.

Alternate
I I

Problem

CZD
Decision

D
View

Fig. 1 Decision-Based Software Documentation

Decision-Based Software Development : Design and Maintenance Old Dominion University



m

D-- Hyper Case

\
\

user

manual

, f\

;/'/'/ii/71,," i_,

Legend

View Link

Justification

Dependency
It

Decision
.D-

Alt. Link

..... iP-

Altemate
t !

Problem

CZD
Decision

D
View

I.... "_:._1

Forming Closure

__ Decision--Based Software Development • Design and Maintenance Old Dominion University



I
i

d _

0_,,- m I_



IFIP - September 1992

Software Maintenance Life Cycle

Understanding:

What problems are addressed'?

How are they solved'?

Why was this solution chosen?

How are the parts of the system interrelated?

Impact Analysis:

What parts of the system are affected by a decision?

What decisions impact a particular part of the system?

What Level of Effort is Required?

Redesign:

Justify and Commit Redesign

What parts of the system can be reused?

What parts are now obsolete?

Is the modification consistent with the rest of the system:

Validation:

Does the System satisfy its requirements?

If not, which decisions must be changed?



IFIP - September 1992 10

Process Modeling

Process:

• Set of activities

• Relationships among Activities

• Team Structure and Responsibilities

• Role of Software Engineering Environment

• Policy and Constraints

• Resource Management

Process Model: Formalization of a design method which

• Provides notations amenable to analysis

• Encompasses breadth and depth of software development

• Assists in management - defines milestones

• Provides heuristics/algorithms for well-understood situa-

tions



lOa

Process Model for Traditional Life Cycle

Detailed Description

Exlernal_customer_requirement_resolutioncu

system
--> taSkcu > (Softw,'u'e_development I Customerfeedback) >

lnternal..,oerfectionandcorrectioncu.wa --> taskcu.wa > Software_development > system

Software_development --> task > (Understandi&gM, t

UnderstandingsF.) >/*requirements_definition*/ task_root: task_.problem

/*list of reusables candidates*/ {problem},

Task_problem_solving >/*first_level_decomposition*/ {task_problem},

{AssessmentM,,.S_ > (task_root, effort, task_root.size, task_root.risk) Change_task_decision > task_root}

Assign_resources > schedule

Transfer_task_to_problem_space > agenda

{agenda; schedule > Solve..problemsE > agenda

Review_meeting > meeting_notes

Implement_meetingdecision > schedule, agenda}

UnderstandingMa.sE "-> Exploring 11add_toreportMa._.F. > report

Exploring --> Requirements_definition II Reusability_search

Requirements.definition --> (keywords > locate_problem > relevant_nodes: {problem},

make_new requirement) > task_root_problem

V relevant_nodes > Understand_problem

Understand_problem --> problem >{(Visit_node dependency_up > problem)
I terminate at node closure relevant nodes

I back }

/*exploration*/('justification_from > problem

Ijustification_to > problem

I dependency_up > problem

I dependency_down > problem)



I

O-- Hyper Case

Problem Status for Task A
100

Task Status for Release 12.4

Decision-Based Software Development ."Design and Maintenance Old Dominion University



IFfP - September I992 12

Managing Deferred Decisions

• Problem Not Adequately Understood

• Solution Identified First

• Inadequate Justification

• Instantiating a _X[ore General ProbIem

• Inadequate Resources

• Unexpected Opportunities

• Inexperience



IFIP- September 1992 13

DIRE - Decide, Instrument, Re-Evaluate

Problem

• Engineering Tradeoffs involve many interacting decisions.

• Inexperience affects quality of some decisions.

• Impact on overall performance of decisions max be difficult
to determine.

Solution

• Identify decisions widl "'weak" justifications.

• Minimize the impact of these decisions (minimize justifi-

cation links).

• Instrument system to validate or refute this decision.

• Re-evaluate decision using data collected from operational

system.



IFIP - September 1992 14

Evaluating the Process Model

• Assess degree to which the objectives have been met

• Develop a better understanding of the dynamiks of tile

process

• Identify what pieces of information are needed and when

• Develop a methodology for DBSD

• Identify where tools could be applied to improve the pro-

CeSS



IFIP - September 1992 15

Interval of Evaluation

Main purpose of evaluation is self improvement.

Balance progressive and anti-regressive activities.

Four intervals of evaluation:

System Life Time: A cost/benefit analysis is done over the

life time of the entire system.

Release: Most large software systems go through a set of re-

leases over its life time. Each release usuallv represents a

significant change in the s,vste_ in which major problems

are rectified and new features are added.

Task/Change Order: A task represents a unit of work to

be performed. A task could be defined in response to a

trouble report o," could represent the addition of some new

feature.

Session: A session represents a contiguous period of time dm-

ing which the programmer is working in t,he development

environment.



IFIP - September I992 16

Understanding the Dynamics of the Process

Is there a working set model for software maintenance
tasks?

How are the dynamics of the process affected by the task

type (corrective, perfective, adaptive)?

What information was found useful in performing a task:

What are tile different information needs of Managers.

Sohware Engineers, Otl_ers'?

What information was missing or difficult to access'?

How can consistency be maintained?

Session/Tasks Measures gathered:

• Sequence of decisions visited

• Sequence of commands issued

• Time spent in each view

,_ Keystrokes entered

{

I



[6a

D- HyperCase
II

7 \7

I

.........7::11........... "...

f;
i

@ "
f

t/'

./:

.7"

..f"

..":

Decisi°n-Based S°ftware Devel°pment " Reengineering pr°blem space Old Dominion University



IFIP- September 1992 17

Summary of Recent Experiments

Data Collected over 43 Sessions Resolving 10 Maintenance

Tasks.

• Additional Docmnentation Effort for the Decision Struc-

ture is about 10%.

• About 80% of Time was Spent in Reading This Doctunen-

ration.

About 90% Of The Accesses To The Document Base Were

Through The Problem Views.

The failure rate of reused code was 5 times less than new

CO(IO.

Changing decision on cursor position in second window

invoIved the deletion of one problem whose view contained

315 LOCs in 25 functions (containing a total of 892 LOCs).

• Corrective Maintenance tasks are more localized with high

holding times.

• Perfective Maintenance tasks access many views with high

holding times.

• Adaptive Tasks access a few views with short holding

times then create new views with high holding times.



tFIP - September 19:)2 t8

Future Directions and Work In Progress

• Create Version 2 DHC - Agenda and T_usk _,[anagement

Support

• Prepare Guide Book Based on Process Model/DHC

• Undertake Empirical Evaluation of Process Model

• Sl;udv Slti)i)_rr, for Re_tsabilitv

• Active EnvironnlenLal Support for Ptc_(ess ._.[_lel



IFIP - September 1992 19

Conclusions

To perform a given t_k, the decision viewpoint rectuires

fewer conceptualizations than the functional viewpoint.

These conceptualizations are more precise in i,tenti_ing

the relevant parts of the document b_se for revision.

DBSD helps control tile sometimes chaotic creative pro-

cess of software development.

• Non-functional requirements play an important role in the

problem solving process

• Explicit Process ._Iodel clarifies roles for Software Engi-

neers, Managers, Operators and Software Tools.

• Software Engineering Environment should support Pro-

cess Model.

Software System should be instrumented to collec_ infor-

mation to validate/refute critical decisions



20

m

D-- Hyper Case

ibra_ of Components_ C1

Generative _:_

rNN

Process of ....

Models of Reuse

Decision-Based Sojqware Development " Design and Maintenance Old Dominion University



IFIP - September 1992 21

Closure

Ideal closure: exactly those portions of the document base

which are relevant to the task.

Actual closure: depends on the structuring method and

the granularity of view point it imposes on the document base.

Precision:

The degree of match between tile actual and ideal closures.

Relevance: Tile percentage of tile actual closure which is in

the ideal closure. One minus the density is a measure of

the "'noise" in the actual closure.

Oversight: The percentage of the ideal closure which is not

in tile actual.



IFIP - September 1992 •) 0

Abstraction

The representation of a set of related concepts as a single

unit. If this representation helps in tile understanding of the

set of concepts then it is an appropriate abstraction.

Size: One measure of an abstraction is the size of the problem

it conceptualizes. The metric used in our evaluation is the

number of Lines Of Code (LOC) related to tile abstrac-

tion.

More LOC =:> More Abstract.

Power: For a given t_k, the number of abstractions needed to

understand and solve that t_k is a measure of rile power

of the set of abstractions.

Smaller Sets =:> More Power.



IFIP - September I992 24

Using DBSD Approach

• Make the Solution Visible.

Work Through a Particular Task.

• Identi_' the Problems That Each Solution Solves.

• Generalize the Problem, if Appropriate.

• Uncover the Underlying Assumptions Which Justify the

Particular Solution.

• Develop Alternate Solutions.

• Justify tile Assumptions. Pick tile "'Best" Solution.

• Link the Identified Problems and .Justifications.

• Place Incomplete Decisions on Project Agenda



.. J

IFIP - September I992 25

Cost - dwindling budget - increased demand on increasing productivity

and reliability. - competiveness.

loss of intellectual control of process. Points:

• paradigm justification

• DBSD

• DHC

• Evaluation purpose

• results

• methodology and process

- management controls temporal aspects, resources and defines non-technical

constraints - interleave VG - management is process of making decisions -

dynamics of decision making - solution w/o problem, SP wo alternates, al-

ternates wo solution, no justifications - degree of satisfaction If time show

them performance req. and DO without solution and justifications are hy-

pothetical.

1. do nothing

2. change req.

3. temporary rele,use from req.

4. tune program

5. redesign

-DO create interleave for this set of decisions. No justifications for choosing

yet. limited resources could push for 2 or 3. TO choose between 2 and last

two need to know if it scales (complexity constant, linear, exp.). Points up

that alternates are part of the agenda.



Decision Based Soflware Develolmlenl in the Reuse Arena

Daniela Rosca

Chris Wild

Cheng/in Zhang Chris Co _l,les

I)cparlment of Compulcr Scicncc

Old Dominion Univcrsily

Norfolk, VA 23529-0162

Work sponsored by granls 126581 from NASA I.anglcy Rcscarch Ccnlcn granl 526291 from

Virginia's Ccnlcr for lnnovalivc "l'cchnology and grant 526292 from Paramax



Department of Computer Scie.ce ODU

OUTLINE

t Software reuse terminology

• Decision Based Software Development Approach

• Decision Based Software Development in the Reuse
Arena

Software Reuse Workshop. April 1993 ;9



Department of Computer Science ODU

ABSTRACTION

What type of software entities are reused and what abstractions

are used to describe them'?

Reusable code:

• reusable data-centered components (Ada: stacks,lists, strings,

queues,sets, trees,etc):

• reusable function-centered components(sorting, searching).

Software Schemas (fomaal extension to reusable software components) :

• the emphasis is on reusing abstract algorithms and data

structures

• each schema has a specification that includes:

• a fonnal semantic description of the schema

• assertions for correctly instantiating the schema

(constraints on the variable part of the schema)

•assenions for the valid use of instantiated schema

(preconditions, postconditions)

Application Generators:

• reuse complete software system designs (expert systems

generators, compilers generators, etc.)

Very High-Level Languages:

• can be viewed as specification languages when compared with

high-level languages (executable specification languages)

• mathematical abstractions (set theory, constraint equations)

Transformational systems:

• development histories that can be replayed (PADDLE, Glitter)

• transfom-mtions : mappings from syntactic patterns of code into

functionally equivalent, more efficient patterns of code.

Software Architectures:

• large grain software frameworks and subsystems that capture

the global structure of a system design

Software Reuse Workshop, April 1903 3



Department of Computer Science ODU

SEI,ECTION

How are reusable entities selected for reuse?

Reusable code:

• techniques for describing the components (formal annotations -

Anna)

• techniques for classification and retrieval (different indexes)

Software Schemas:

• sophisticated searching at the abstraction specification level

(PARIS)

Application Generators:

• libraries of application generators have not been developed yet

Very High-Level Languages(VHM_):

• selecting the VHLL tha! is most appropriate for a particular

application

• selecting the language constructs that best represent the

application

Transformational systems:

• expert systems

transformations (Glitter)

technology m select from a library of

Software Architectures:

• library techniques

Software Reuse Workshop, April 1993 4



Department of Computer Science ODU

SPECIALIZATION

How are generalized entities specialized for reuse?

Reusable code:

• by directly editing the code

• pararneterized macro expansions

• Ada generics

• inheritance

Software Schemas:

• substitution of language constructs, code fragments,

specifications, or nested schemas

• choosing from a predefined emxmeration of options

Application Generators:

• by providing an input specification. The techniques used

depend on the application domain abstractions grammars, regular

expressions, graphical languages, interactive dialog,etc.

Very High-Level l,anguages:

• parameterized language constructs that are specialized by

recursively substituting other language constructs

Transformational systems:

• not an issue, typically

Software Architectures:

• horizontal: source-to-source transfom_ations (optimizations in

Draco)

• vertical: component refinements (alternative implementations

with different performance characteristics)

Software Reuse Workshop, April 1993 5



Department of Computer Science ODU

INTEGRATION

How are reusable entities integrated to create a complete software

system?

Reusable code:

• module interconnection languages

Software Schemas:

• module interconnection languages

• semantic specifications to compose schemas:

• horizontal composition corresponds

composition using nested schemas

are created.

to schema

• in vertical composition higher-levels of abstractions

Application Generators:

• do not require integration

Very High-Level Languages:

• encapsulated computation (computation within a function is

influenced only by its input parameters and re/tim values from the funclions

it calls)- PAISLey

• order-independent specification and compiler-generated

control flow and data flow - MODEL

Transformational systems:

• implicit in the order in which the transformations are applied

Software Architectures:

• special purpose module interconnection language

Software Reuse Workshop, April 1993 6



l)cparln_cnl of C(mlptilci ,cgcic'll(c Ol){J

Decision Based Soft, ware Developm(;nt,

---%

i

M<),tel l,lle Pr(l('(,ss (it" S(_fl.w,ir<' D(:v(']</l>lll<'lil. ;I.ll(t |"]'vr)liil.i<lll ;is

it SC(; f)f [lll.(,rr(,ia, l;e(1 l"r<>lll(:lli S(llvilig h;t>is,,,l,',s.

R(:cor<l Dc('isi(>ll.<_ M;irl(. alirl Tlieir l7('liit i,>llsiiil>s i.(i ()l.]i(,r l)<,-

(:isiolls _.1.I1(1I.l'l i.ll(, l->l'<>(lllcl,s (_f _(IVI.W;II'(' ])(,v(,[(llllll(,llI-..

Wti7 Pl'(ll)l(;lii Soiviiix'. '>

Sul>pc>rt.s Pr<>('(,ss A<ross Lift' Cv('l('

SIlI)l>()l't.s N(>ll-l'illl('l.i<>iiall 12(,(lllir(,ill(,ills [;_'s, lllll.i(>ll

Pl'(_(','ss ()ri('lll,',l

Why Record Oe(:isiolls

it D<,cisi(>li R;ll.i,,ll;l](, l)ift'i('lllt, i-.o I;_.<'\'+,rs(, Ell e,ill(,(,r

• [](,(:(ir(I I"l(>lilisillg ./\II,('l'll;i.l,(' ,S_]lli,i(>lis ;111(] I)(';i.([ l_,li<[.<-;

• Ellgili(:r'rilig is Tra<litlg Off Oecisioils

II _i')['I;W;I.I'(' _i[;iilll.Cll;lllf'? is C]lil.ll,@ll,t_ O<,cisi(iliS

S(it'l,warc I{('lls,, \\;(_rl<sll,q>, .,\l,ril I f)f):l 7



'_,tTWl p
a

Dcparlmcnl of Conq)ulcr Science Ol)l,.J

Dccision Smicture View,of Document FIasc
n

luircmcnt , SpcciFicnlion , Archileclural ,' Dclail l)csign
• Dcsi-n '

n
i •

i
s

r-----I " [-"_ ,' ," ['"_

I I ',b-------J ,',, ;'1 I

_ ( )III'C_."

Spot. (loc

,.,_\, \,,',..',,. ",.,

\ x.>,>,.',.2,,.>.

J

a

w

w

#

s

#

e

m

i
l!i
I
l

liNt'l

\ lllilllIl3l

'fl\

.hxstificatio 1

Dependency

l)ccisi(m

All. I.ink

o . . p,-

Alternate
e p

l_roblcm

CZD
l.)ccisi(m

F-]
View

[:::::::::::::::::::::::::::>;>.1

l)ccision-Based Soltwarc l)ocumcl_lali(m

Sortwarc Reuse Workslv_p, April 19Y3 8



l.)c[_arli_cxll o1" C()nll)Ulcr ,_ci('11((" ()l)tJ

• _ _* I+_+,',,+,1 _ m _1_.**_ I . . "lpl_l c_l,+ i1+_,,+'..+ I
m,'_._ _"T,, rO r. _l,(.pmn

.u* I; "+'_+ * "'r" I[l_lIII .., _,._ ]

.....
+t-L i--+,--_-';-. - --

'-................ .....-'T-;.2
PSllm q fill "++t, __ -i,._ ,+11_

..4
'_t +_ l+ tlmr-'_. ++111 _iII u +.i++i I

_. +_ ;l-Oft( lO V-_l_ I+_III+
mr.4 ;l+m vo i +i++_+ ii_

._ _+J,+ _'.¢r_ rn ,_ _+'.I+, .| 1111 ]
,_ i I +I+I lira • .i-

-4 rjs 141 ml.l-_ll+It-_l<t.
.F _l+ m-m l+f+++l+l iml

.I +I m_. ,'q t +_'+I "_l+',lll (iii.

.s ii i+_ ll_l+.-l-

.s t_ lq Ii._'_ I/..m _l*_-ll-Jl_m roll.

mlql * iii Ill t • im +.
.I ii frl'.m++, .t-

.+ +_ ii fkl +i.i

.+ 151B _it,

._ se+ + +.Ii+_ m,l+l I+I ,Ii II '_l+It 11_,
-S II Ill D ",llll +0 • It +I III _I'II

•i iI Jlllm I

Ii -#

._ _l_llm mlll-_ifl'_ l_,;,llm, uln+ ml+l $ + I f_ll.
-+i m_ +II ll_-++l¢Irl_-mklJ IO I._ U roll+ m.

-_ +II i ll_l f,

ii+i wi ;m II ,_+

d m,,l_ "ira II tlCm m?- fl l.$1r_l tl .I'.

+

ORIGINAL PAGE IS
OF POOR QUALITY

,'4,+ltw:lrc [_,cttsc Wmkshnl+, Al+ril I<)<)3 ,9



I

l)ci_artmcnt of Coml_tttcr ,Ecicl_¢:c
()I3U

' (Software Maintenanc(: Lift'. Cy :I('.

Unders t an(li ng:

\,Vl_a.t. l)rol)lollls ;l.vo ;irl,lr_,ssr_cl'?

How ;_r¢' t.l_ov sr)lvc'_l'?

\&;h3; xv;Is I.tlis sol_lt.i_ll _'ll_,s,'tl. _

Impact Arlalysis:

Validation:

Do(,s {,l_r' ,q.5,st.ol_ s;_listx it.._ v_,_l_liir,l_,i_ls, e

SOI'I,X_.';II'¢" ]_21lN¢" \\"_)vl4Nll¢_l), .,\ i,l'il ]!)!):{

OI_iGINAL PAGE IS

t f)



m

l)cp,lrlmcn( of Colllptilcr ,ScicIlCC
()l)tJ

Process Modeling

Process:

• Sef, of act, ivit.i_,._

• E.elal.iollslJ ips ;/1rim i_ .,\ ct.ivi l,ics

• Tea lit SI,l'II(:hll'(' _/.ll_'i l_csll<lilsil_ilit.i_'s

• Role (_/ Si)['l;w;.ll'(, Ell,u;iiltt,'rilig EllVil'()lllll('lll

• P<)licy ,n¢l C'xulsl:raiilL_

Process Model: 1-"_>rill_liz,_t.ioll of :_.<1<'._i;411ill_,l.li<_l wlli<'ll

• /\ssisl,s ill lll;I,11;Igr'lll('llI.- <t_,fil_<,s lllil(,sl._ll<,s

._f'i.walc l{<'lls_" \V'_nl,;sllol_..,\l,ril 1!)9:1 II

ORIGINAL PAGE IS
OF POOR QUALITY



m

l)cl-mVlmcn[ of Comtmlcr Scic_¢'c ()[)tJ

Sllmmary of Recent Exl)erimo.llt.s

• A,hlit.irma.l D_clln_ollt.a.l.ioll Eft'ovt, f_)v 1,I1_,Docisic,_ Sl.r_lct.llr- is

a.bmlt, 10_.

• kl,,_tll. S()'X, ,,1 'l'ill_,, w;,s SI_,,III. ill I{.,,;L,lill._, 'l'llis l)''_"llll''lJlal-

l',iol_.

v(_Ivcrl t:lle (lclct.ion of r_r' l)rc)l)lmi_ w'll_,s,, vi,.w r'r_l_t.ai_l,',l 315

L()Cs i_l 25 fi_nct.i(,_s (co_tt.aini_g s_. l.,,t.;_l ,_f' 892 L,()Cs).

• Corre(:t.ivo Ms_.i_lt.ena,_('o t.a.sl(s at(, _t(,l_' l,_(aliz('(l wit.l_ lli,e,l_

• A,la_l)(.ix',' '-l'_.'_l,s ;_.,'__'s._ ;_. l,'w vi,'ws wil.t_ sl_,)l'¢, l_¢)l,lil_ I.i)_,,s

t,hc_ croat.o _,,w vi(,ws wiI.h l_igl_ I_l,lillg, t.il_,os.

S¢,l'l.warc ]{¢.'tlsr, \'Vorksll_q,..,\l_,'il 199:1 12



I)cl_arlmcrlt of Corl_l_txtcr Scicz'_cc"
()l)tJ

Closure

Ideal closllre: _x;l¢:l,ly l.ll_s_, i_+>l'l.ic_lis _>[' l,llc, (l_>_illll(,lil, l_;is_, wllic-ti

;i.r0. rclcVa.lil; t,(i f,hc' i,ask.

Actual closln'e: dr'l>encls ()11 t.hc St, l'llCl,tll'illg lil('t.lio(1 ;lll<l lilt'

t_rnlllll<l.rit, v ltf view i)clillt it. illll>C)se._ ()li f,]l<' <t_lc'lllll(,llf. ]>;ls(,.

Pro.cision-

Tlic clr'gl'('c' o[" lli;ltx']l ll_'l.w<'<'li I.ll_' ;l_'fital _lilrl i<l,';ll _l,_sllr,'s.

1R.elovanco: Tlic l)crc(tilf.;I.g< • 0[" l.h<, ;l¢:t.ll;li c-I<lslli'c wllic']l is iii i.li_.

i<lea] c'lc_s_lrc. ()no lnillils f,ilr' <l<'llsif.\' is ;i lll¢,;.iSlll'f, l)t lllc

'_li_)is<t" ill I.llc ;i.c:t.li;i.i _:l_._li_'.

Oversight" Ttl<, llOicollf.aR<, ¢)f l.ll<, i<l<,i_l cl<_sllr<, wllir'll is ll<,l, ill flit,

acl,liil.1.

Sofl, warc l_eilsc \'\"orksl)Oll , :\l)ril I f)f);l t;I



,q_rr

I)cparlmcnt of ComlUUlCr ScicIIcc ()l)tJ

Abstract, ion

The represmlt.a.t,io_ of a. sel. of relat.e(1 col_<'el_l.s _s a. si_,_le _l_it.. 11

I;llis rel)rc,sc'tlt-.a.l.i_)ll ]lell)s i1_ f.lle _ll,lersl.al_clill_ _,l t ll_' .'_,'I: of c,),l_',,i)t.s

t.]lml it, is all appropriate a.l)sI:racl.io11.

. _._ ? I_._._"_l

0 _-

,'-;off,ware ]-{r'_,se \'V,_rkst_,,1,, ,,\l,l'il 19!):1 II



m

Dcparlmcnl of Compulcr Scicnce OI)U

DBSD IN THE REUSE ARENA

Abstraction: Which enlities do we manipulate and store?

• high level ol.ljccts(specifications,requirenmnts, designs) and

SOtlrCe code (scc page 31)

• in DBSD thcse objects are represented as: problems,

alternatives, cvaltial ions, decisions, justificalions (scc pages 17,18.19)

• lhc granularity of lhe objccls rcuscd is nnl influenced by Ihc

synlactic COllSlrtlClS oflhc source language use(l, bul by lhc absl faction level

of" decisions madc.

• DBSD allows not only lhc reuse ofcomplclcd producls, hul also

Io rcusc or replay lhc proccss used co olxain Ihc pro(l_cl.

• I)I_;SD is nol ccnlcrcd on funclion,iI (Icc_m_p_)silion _r (_lt_cr

tra(titional mclhods, il provides ,_ complcmcnlary apl)roach by il.s

non-linear view of the problems.

Selection: How (Io we best identify the components most relevant to a

given user's needs?

What kind of taxonomies and scarch slralegies do we providc?

• Library techniques: faccled rcprcsenla_ion, scarch

with a similarity measure

• graphical browsing (see p_gcs 20.2122)

• l]ypc/Icxl (scc p:_gcx23,25,26.27)

Soflv,,;lrc Rcusc Workshol_, April 1093 15



I

Dcparinmnl of Compulcr Scicncc OI)[J

FUTURE I}I,]VI,;I,{}PM ENTS

• Specialization: th}w {h} we customize a selecie{I generic entily?

• selecting a value from a precompuled list of alternatives

• transforming an absiract program sclmma using a set of

transformal tonal rules

• illfcriing a value using a scl of hcurislic (lcsign rules all{i/or

algoriihms.

• Integration" What techni{lues of 1}rograln c{)mposilion (h) we use?

• donmill-speci fic rules

• cxpcrI syslcrns Icclmology

• Management: assessment {}f reuse

• associating views to source and documcnls we can exactly

identify those COlTlpOllenls rclcv;.inl to a soluticm.

• we can i(tcrllily all lhe cornpormnls impaclcd by a vicw arl{I

estimate their size, complcxiiy, effo_ls,etc.(scc page 32)

•frorn a spccific retrieved cornponcnl wc can sclccl only file

rctevant parts to lhc ctlrrelll problem.

Softwglrc Reuse Workshop, April 1993 16



m

l)cpaxllllC'.nl ()f C(mq_ulcr ,'c,ci(:Ilc¢

DHC OUTPUT IN LATEX

PROBLEM: reengineering_problem

Develop a methodology and supporting tools to port applications from a

source machine to another target machine, to translate from language A to

language B and to enhance existing applications.

ALTERNATIVES: 1) Develop a fldly automated, non-interactive sys-

tem for specific cases. (for example, an Expert System for transforming a

COBOL program) 2) Develop an expert system using only DIIC. 3) Develop

an interactive system using both DtIC and Refinery. 4) Non-automated sys-

tem for a specific ca.se.(like "awk')

DECISION: 3) Develop a Reenginee.ring_process_m¢)del, a. rullning, eff¢,c.

tire DltC_prototype, make Refinery part of the environment, and liqk I)I[C.

and R,efinery into a Unified_environment.

JUSTIFICATION: Dicta.ted by : a. the ava.ilability of I)IIC and Refin-

ery; it will be a matter of evaluation (see EvMuation_problem) b. vnlidatiou
of the above decision

EVALUATION:

UPLINKS: apply_an d_i,n prove_D BS D_mct hodology

DOWNLINKS: porting_problem transla.ting_problem enhancing_problem

PROBLEM: reengi neeri ng_ process_model

Develop a process model for porting,translating and enhancing applications

ALTERNATIVES: 1) Develop separate methodologies for: a. Porting to

different diMects of COBOL(e.g. lloneywell to Microfocus) b. Enhancing

applications (e.g. using SQL |a.nguage instead or file operations) c. Trans-

lating into another language (e.g. COBOL to Ada.) 2) Develop a general

methodology for everyl, hi ng.

DECISION: 1)

3USTIFICATION: The process is too little understood to fully develop

a general methodology for everything.

EVALUATION: We a.ssume that the existing applica.tion is partially
DIlC-ed.

UPLINKS: simple_porting

DOWNLINKS: process_model_implementation process_model_notations

get_Refinery_process_model get DtlC_process_model_for_Renginoering corn-

bin e_ D H C R,fin cry_ p rocess_m od els



[)cl-)artmcl_l ¢_f C¢_mptltcr Sciczwt:
C)I)U

DHC OUTPUT IN LATEX

PROBLEM: reengineeri ng-problem

Develop a methodology and supporting tools to port applications from a

source machine to another target machine, to translate from language [,I to

language L2 and to enhance existing applications.

ALTEI'C.NATIVES: 1) Develop a fully automa.ted, non-interactive sys-

tem for specific cases. (for example, an Expert System for transforming a

COBOL program) 2) Develop an expert system using only DtlC. 3) Develop

an interactive system using both DIIC and Refinery. ,1) Non-z.utornzted sys-

tem for a specific c,a.se.(like "awk")

DECISION: 3) Develop a Reengineering-process-model, a running, effec-

tive DIIC-prototype, make Refinery part of the environment, and link I)IIC

and Refinery into a Unified-environment.

JUSTIFICATION: Dictated by: a. the availability of DlIC and Refin-

ery; it will be a matter of eva.luation (see Evaliiation-prol)lem) b. vnli,lation
of the above decision

EVALUATION:

UPLINI<S: apply-and-ira prove- DBSI)- met hodology

DOWNLINIKS: porting-problem translating-problem enhancing-problem

._;(>ft_':lir l_'ll:," \V,,k:;h,,p, /\l}ril 1')93 ]



I

l)ci-_arttvw+t+_tc'Jl CoxnI_tlc,c:r ,",;ciczlcc
()t)tl

DHC OUTPUT IN LATEX

PROBLEM: reengi neering-process-model

Develop a process model for porting,translating and enhancing applicat.ions

ALTERNATIVES: 1) Develop separate methodologies for: a. Porting to

different dialects of COBOL(e.g. Honeywell to Microfocus) b. Enhancing

applications (e.g. using SQL language instead of file operations) c. Trans-

lating into another language (e.g. COBOL to Ada) 2) I)evelop a general

methodology for everything.

DECISION" 1)

JUSTIFICATION: The process is too little understood to fully develop

a general methodology for everything.

EVALUATION: We assume that the existin_ application is pn,rtially

DtIC-ed.

UPLINKS: simple-porting

DOWNLINKS: process-model-implementation process-model-notations

get- Refi tmry-p rocess- model get- D llC-process- model- for- R+.ngine+.ri ng

corn bine-D II C- Rfi nery-process- models

._;<_ll v.'at c [<t:tlr,c \V, ,+k:+h+,I_, 1\ pril 1993 19



I)cpartmcx_l o[" Compulcr ,<:,cicnc¢
- ()t)t J

apply-and-im
reengineerin

[CASE-toola

,_;c_l'lW;ii"" l,'.c'll_;t" \V_>lkr;h"p, April I+)<)3 20



l)cl_:Lrtnlclat of Conli_ulcr ,":,cicx_cc
()[)lJ

,-proces

[market-study]

CASE-tools

evaluation-p

[get-Refinery]]

[get-DHC-proc i

lProc --moaol

[transformati]l

closely-coup

[loosely-coup

analyzo-log-

[analyze--iog-II

analyze-log-

demonstrate-Ii

domonstrate-

[other-tools I

Istatistical-I

U nU'_d-Envi i

log-U E

Ilog-PM_

Iiog-R efinary ]1



m

l)cl_arlmcnl of Coml_ulcr ,t;cit'I_t_'
()l)t/

Unifiod-Envi] understand-R

[upgrad_-DHC

llog-P M tt [tool-for -upg [entry-defini

[upgrade-DHC-]

[Iog-R efinary]l [fieid-defini J] empty-field- I



[)Cl_;Irlmcnl hi" ('on_ll_zlcr %cicl_cv
()l)lJ

lacs: Emacs @ wurttemberg []

reengineering-problem
reengineerlng-process-model
evaluation-problem

logger
statistical-anallzer

applg-process-model-to-trans?ormatlon-task
Preserve-dectsion-structure-tn-AST

Precision-o?-deci$ion-trans?ormation

new-code-added-by-trans?ormatton-rule
trans?ormatlon-rule-decislon-views

manual-a?ter-trans{ormatton

tooi-?or-upgrading-OHC
robustness-o?-DHC

order-o?-obJects-edltlng

insert-agenda-list

modi?g-agenda-llst

entry-de?initlon
; ?leld-de?initlon

I emptg-?leld-de?inition

i applg-and-lmprove-OBSO-methodologg

long-term-goals

' reuse-problem
Al-applications

porting-problem

] enhancing-problem

i translate-problem

2 simple-porting

3 complex-portlng
4 market-studg

5 reenglneerlng-contracts-characterlstlcs

6 reengineering-solutions-characteristlcs

7 process-model-implementation

8 notations-£or-process-model

:9 get-Re?tnerg-process-modeI

;0 get-OHC-process-model-?or-Rengtneertng
;I combine-DHC-Re?lnerg-process-models

_2 analyze-log-on-Process-Model
_3 analgze-log-on-Unl?led-Envlronment

_4 analgze-log-on-OHC
35 analgze-log-on-Re?Inerg

36 demonstrate-process
37 demonstrate-DHC

38 demonstrate-Re?inert

:upllnk. d:downlink, c:current, l:latex. B:Braph. ?:?orm. p:process, l:lnc

pAGE tS

OmGl_l_t QUAL_

:;_ll_v:l_" I.:L'II:._" \V,,_L:,I"'f_, Aplil 19g.1 23



[)t,p,lrCilit'ill (ll" (_'(llllllillt'r ,_tit'iitc"
()l)tl

em_cs: Em_Lcs @ wurttBmbel'g []

Process Model ?or Traditional Ll?e Cgcle

Kurt Haly and Chris Wild

Short Form

BNF PRODUCTIONS

• Customer_requlrement_resolutlon--> So2tware_development II Customer_?eedback

Internal_development --> So?tuare_development

;, So?tware_deveiopment --> (Understandlns_needs
Hodt?y_or_create_new_task SE
Catculate_e??ect_and_costs MA.SE

Assign_resources_to_schedule HA
Trans?er_task_to_probtem_space SE)
II (Review_meetin6_reports_and_prosress MA.SE
Oelete_dectston_and_repIace HA.SE
Impiement_meetlns_decisJon MA.SE)

HA. SE

4. Understanding_needs --> Exploring_needs II add_to_report NA.SE

5. Exploring_needs --> Requtrements_de?tnttlon Create_and_add_new_task_problem \
Flnd_and_add_reusable_node

6. Requlrements_de?inition --> (locate_problem I make_new_requirement)
Understand_problem_links

7. Understand_problem_links --> {(Visit_and_read_node dependency_u p)
I terminate_at_node_closure_retevant_nodes}

1 ( justi?lcatlon_From
I justl?tcatton_to

I dependency_up )

B. Vlslt_and_read_node --> read_descriptlon document_v/ew Read_document Read_ju\
sti?ication

9. Read_document --> {(switch_view I scroll_view I emacs_command$_
l"l"l/_ _w_" i Ii "_ Ill I itI ! Illl. I JJl_

u:upllnk, d:downlink, c:current, l:iatex, g:graph. G:eoFm. i:ikde_. _{_Fo2@ss.

_;_,l'lt',':ll_' I(t'il',l" \ViilL'Jl"l_. Alll il I093 24



m

l)cpmImcnl of Comlx_Icr ,%ck'_cc
OI)U

em_cs: Emacs @ wurttemberg []

ROBLEM: reenglneerlng-problem
Develop a methodology and supporting tools to port applications ?rom a source \

,achine to another target machine, to translate ?tom language LI to language L2\

and to enhance exlstlnE applications.

_LTERNATIVES: I) Develop a ?ullg automated, non-lnteractive sgstem ?or specI?l\l

_cases.

?or example, an Expert \?stem ?or trans?ormlng a COBOL program)

2) Develop an expert system using only OHC.

3) Develop an Interactive sgstem usln 8 both DHC and Re?Inerg.

4) Non-automated system ?or a speci?ic case.(llke "awk")

IECISION: 3) Develop a Reengineering-process-model, a running, e??ectlve

JHC-prototype, make Re?Inery part o? the envlronment, and llnk DHC and

_e?inerg Lnto a Uni?ied-environment.

_USTIFICATIOH: Dictated by :

a. the avallabllltg o? DHC and Re?Inerg; it will be a matter o? evaluat\
on (see Evaluatlon-problem)_

b. validation o? the above decision

]VALUATION:

}PLINKS: apply-and-improve-DBSD-methodology
IOWNLINKS: portlng-problem

translating-problem

enhanclng-problem

_o llnk selected



I

- 13cpar[mcnl of Compulcr Scicl_cc -- '
- OI)tJ

zmacs: Emac= @ wurttemberg []

)BLEM: reenglneertng-process-model
_velop a process model ?or porting.translating and enhancing applications
ERNATIVES: I) Develop separate methodologies ?or:

a° Porting to dl??erent dialects o? COBOL(e.g. Honeywell to MtcroPocus)

b. Enhancing applications (e.g. using SOL language Instead o£ ?lle oper\
[ons)

c. Translating Into another language (e.g. COBOL to Ada)

2) Develop a general methodology ?or everythin 8.
CISION: I)

5TIFICQTIOH: The process Is too llttle understood to ?ullg develop a general\

ethodologg ?or everythlng.

ALUATION: We assume that the exlstlng appllcatlon Is partlallg DHC-ed.

LINKS: slmple-porttng

WNLINKS: process-model-implementation

process-model-notations

get-Re?inery-process-model

get-DHC-process-model-?or-Rengtneering
combine-OHC&R?tnery-process-models

;_.)_:,_lillJl:;le_..-__-_Wrllir..___Z:,,Zil,lJI.|ill_ii.r,=--J_....... idlll_.r_,._-;_ ..... "-It'-I i " "" "_ ........ =".....

S(4"Iv.':,'r I".c.'.c \V,,, k:J,,,p. April 1')93 26



•13cp:lrlmcnl of (_(mH)_llcr Scit'ncc
()I){1

_s: Em_s @ wurttembercj " []

_EM: 8et-DHC-process-model-_or-Rengtneerlng
_st the DHC process model to the porting problem
RNATIVES:
SION:
IFICATION:
UATION:

NKS: reenglneering-process-mmdel
ILINKS:

_:upllnk. d:downltnk, c:current, l:latex. 8:sraph. :form. p:process.

_;(;l_..':_l,' I_'t_:._: \V,.k:Hl,,p. April 1993 27



w

Z_cp:trtnlcxll ()1 C(_nlj_utcr _CiCZlCL"
()I)L_)

.... I I []

OHC LOGOIHG rO_

H_me: Chen_lln Zha_4_ Commentg: an experimental log@In_ Porm

Task ActIvltg Procegg Object Proce_8 Hodel 5tart Time End Time

re-eng process write-document

detailed pt'oces6 wrlte-document

Unique-name wrlte-proRram

dhc-browslng-de_ Change_problem

_dhc-brOusIng-demo Add_problem

BNY rulea re-engineerlng

BI_F ruJee dhc pr'ocesg

LXsD Bource dhc-proces6

Problem dhc general

Problem dhc general

Feb 1B.199] B:0Op

feb 19.1993 9:]Oam

Feb 20.1993 7:20pm

Wed _pP 14 12:55:45 1993

FPI AOP 16 16:16:32 _993

Teb 18.1993 11:I0pm_&

Feb 19.1993 12:00U_&&

Yeb 20.1993 12:300m_&

Wed nor 14 12:56:23 1993&&

rrt AOr 16 16:16:53 1993&_

oI_GSNAL PAGE iS
OF pOOR QUALITY

_cd'l_v_II_"l_.cII_it'\V,,Ik:J_,,l_.A!wil 1<)_)) 2_



m

Dcl3:nlmcni of Coml_UlCr Science OI)U

iask_problcm

new problem not obtained from modifying existing problem.

Key: task relations

problem tags lists

dependency relations

justifcation
l

.Ib

"Ti:n/:llive t;l,_k pr_hlcm spncc ;ind cxistinp, prohlem xpace. 2<)



W

l')(,l_:l;-llncnl of C(_nq_tll(:r ._t:icnct"
()l)tl

DHC Process Model

ftware_development --> tasks_ 2#a > Understandingsg_a prequirements_definition*/

task_root: task_problem > {problem} Plist_of._reu_ble candidates*/

Task_problem_solving > {task_problem} /* first level_decomposition*/

{AssessmentMA.s_. > (task_root, effort, task_root.siz_e, taxk_root.risk)

Change_task_decision > ta._k_root}

Assign_rc._ources > _hedule

Transfer_task_to_problem_space > agenda

{agenda; schedule > Solve_.prol_lerasE > agenda

Reviewmeeting > meetingnotes

Implement_meeting_decision > schedule, agenda}

..... ,I_, April 1993 3(')._;_l'lw;Ht" 1',_ ll,,t. \V_lkr;llc



m

l)cparlmct_l o[ Coi_llmlCr ,V;cicncc ()I)l/

DHC Process Model

9ring --> Requirements_definition II Reu_bility_._arch

_ability ._..arch --> criteria > searchspace Select_node > add_reu_ble_node > task_.problem.reu._e list

c problem_miring --> task root > V {node E relevant_nodes} > (Modify_existingnode > {taskproblem]

{task_root > Create_additional_new task > task_problem})

,dify_existing_node --> node > ere'ale_task_problem > taskproblem, taskrelation tag_subproblems >ncMe. task_problem >

{Add_new feature I Delete old feature IChange..okl_feature ICopy_generic

I Add rcuse/* for all nodes on reuse list]

Jd_reuse --> change_descripthm adjust_justification adjust_reusetaskproblem add_toreu_ list

S_,l'lw:lvc Rct*:,c \V,,_k:;h,,p. Alnil 1993 31



Dcl_avtn_c_ll of Compt:Icr Sciclwc
()D1J

DIIC Process Model

:essmcnt --> Calculate_DirectEffect Calculate_IndirectCost Review_DataMa

culate Direct Effect --> V [task e task_problem} V {task_node e task.generic U task.out U task.reu_}
>calculate_node_size calculate_riskeffort > {task node]

_7 {task_ncxle E new} > get_effort_risk_size__stimates > {taxk..node}

V {task_node e modify} > Assessment > {task_.node}

{task_node} > calculate_task_problem_size > task
/* for each category add the number in the subproblem nodes
to obtain the relevant figures in the task problem node*/

{tasknode} > calculate_task_problem_effort > task
/* this is the sum of the efforts in the subproblem list */

{tack_node} > calculate_task problem_rLsk > task

/* the sum of the risks in the subproblem nodes "/

{ua.gk} > add_up_direct_costs > toxk r_x_t

cvlate_Indirect_Cost --> relevant_node > get_elosure_list.,juslificalion to from > ripple_list: {problem]

(/* get the worst possible impact by calculating the transitive impact closure for the justification limiLs */

V {ncxle e ripple_list} > calculafe_tolal_ncxle_size > {task_problem.tfpper bound}

/* add up all the metrics, 1t problems, t/LOCS, etc, for all the nodes in Ihe closure */

/* allow for interactive estimates */

I V {node e ripple_list} > (Select_node calculate_total_node_size) > {ta.sk..problem.lower bound}

/* add only selected nodes to the calculation */

{task__problem} > add_up_indirect_cost > task_root



I

l)cparln]cnl of Conlpulcr Science
O1)U

ACTIVI'['IES

(non-Ix'r m in als )

Add-con di tiona.l-decision

Add-info-to-node

Add-new-fea.ture

Add-problem

Add- u n condit;iona.l-decision

Adjust-agenda.

A dj 11s t- a.n d- <_dd- reu se

Assign- resources- to-schod ulo

C a.tcu Ia.l,e- Direct- E,ffocl.

Ca.l c u la.to- In direct- (-'ns t.

Ca.lcu la.t,e-<;ffec t,-a nd- cos 1.s

Change-collditiolml-d_wisi4m

( :ha ng,'-old- f,,a t u r,'

(.:ha n,<e-I'_rc4dem

(',ha nge-ulmonditinnal-de_:isi_nl

Cop.v-gone "ic
( ?rea.t,e- addil.imla.l- now- l.as ks

(],real.e- a n (]- a.d d- new-i,a.s k- problem

C'.u sto met-req u i remc n t.- res_ _1u l.inn

Delete-decision-and-repla.ce

Delete-old- fea.t u r_'

l";xploring-lmeds
l,'ind-a nd-add- reusa hi,,- n_lo

(_enm'a re- prnblems

Im plement-lnoel, inR-d_,t:isi_ms

In terilal-devetolmleltl.

l,oca.l.e-decision

Loca.t e- p are n t

i',oca.l.o-p roblc'm

NI akn-dccisioJl-usi lJg-a II mu a.l.iw,s

M a.k,> nod o-an d- a dd-iN fcl

M od ify-o r-c rea.l e-new- l.a.s k

M nd ify-l,a.s k-nod e

Pick-imde-lin k

R e;id-docu m_-n I,

R ea,d-.ju sl, i fica.t,ion

R,end-n od e-d nsc ri ill,ion

]7,equ i re m ell l,s-d eli nil, ioll

Review-agenda,

1;_eview- nicel:i ng- rellO r t,s-a.ild- ii rogres,<;

II eview- reporl,s- agell d a,-a.nd-sclled u le

Select-and-r0ad-node

So rtwaro-d ovel<_p Ille I11:

Srtlve-prohlonl

'[71"aIISfor- task-I;o-p rol/lem-space

Uildersta.nd- prol_leln-lill ks

llndersta.nding-needs

\;isi t-a.n d- ron.d-nodo

S(1rlwllrc Rt'll:;C \V<nkshc>l_, April 1<)<)3 33



I

l)cpartnmnl of Compulcr Science
OI)U

FIBA'1'U RE$

(t,e.rrninals)

a.&l-agenda-problem

a,dd-justifica, tion

a.dd- reu sea,hie- nod e

add-to-generic-list

a,dd-to-modi fy-list

add-to-new-list

add-to-notes

add-to-out-list

ad d-to- report,

add-to-reuse-list

a.dd- u p-di rect,-cos ts

add- n p-indirect-cosl.

adjust-justifica.tion

a.dj u s t,-reuse-t,a.s k-i)rnblonl

browsing-agenda

calculate-node-size

ca.lcu late- risk-eff_r 1,

ca.lcufate-ta.sk-probloms.effort

ca/cula.te- ta.s k- p rohlems- risk

cMcn ta.te-t;a.sk-p rohlem s-size

ca.]cu ]at.e- r,ot.M- node-sizr'

cha,nge-descriptiou
con d it, ion a.]-d ecisio n

cnpy-new-generic- task- p rnhlem

crea.te-new-problem-nodr'

crea, te- new- t,a._k- problem

crea.te-t a.sk- problem

decision

delet, e- agenda.- p rohlm_

deleu_-prohlmn

delo Ix,- task-p rn hlem

depen den cy-dow n

depen dency-lip

describe-Mtern g.t,ives

describe- problem

document-view

emacs-cnmma.nds

fill-in-description

get.-closu re-list-jus t i fy-I.n- fm'm

ge t-e ffo r t,- risk-size-osl, im a.l,es

get- p a.re n t,- node

give-.j ustilica.tions

.ju sti fic a.l,in n- fl'om

.justifica.I;ion-to

key-suhprohlen_s

]ink-jusl, ifi ca,l,ion

locate-prohlenl

Inca.l.e-de('isi_m

]oca.l.e- pa.ron I:

m a.ke-docisMn

m a,ke-new- repla cem en t,

inodify-a_enda- prnhlem

l_rol>lem

prod u ce-._ched ulo

rea.d-descril_tinn

resea,rch-prol_h,m

review-a._enda

rPview-I'O1"_)I'I,

r_,vie w-sch_,d ule

scroll- vif, w

y;e]+'<: t- aI l.e I'll a.l,i re.+'+;

skip

swil.ch-vimv

I.a,ke-a_end a,-p rohlem

task

I,e I'1|1 i II a[O- ;l.t,- 110(] e- c]o,q II I'0- i'eJova n t, - 11¢)(] es

l.r;_ns fro- l,eu I,a.l.ivo- I.o- prr_hlem-Sl_a ce

u ncon d il.i(m a]-decision

w ril e-a nd- lil_ I<-d_wu mellt,;_.l, inu

noll-dlac I"I'bVI'U I_ I';S

ax'co,_s- re I t_ _r l,

add-qlir,,ct.cc_sl.s

add-imlirerl.-co._ts

;uhl-la_-r_,lu wl.

ca.h:n late- nn d e-,_ize

calcu la.l.o- ris k-e ffo r t

talc u la.l.e-l.ask-prohle n_-e fl'o r I.

ca.Ic u la.te- t a.s k-p rohlel n-n ode

talc u la I.e- l,a s k-problo n> risk

I'lll ;I I's- Ulllll III,q IIIIS

,_el-ofl'orl- nodo-sizr'-est, im a.l.es

n} ake- now- req u i re n_e nl.

p rod uce-sched uls

review-sched ule

Snftwarc P,cuxc Wcnkxh_,p, April 1993 34



I

Dcpartmcnt of Cornpttlcr Scicnc<.."
OI)lJ

ACTIVITIES

(non-terminals)

Add-conditional-decision ,I 1

Add-info-to-no<te 20

Add-new-fea.ture 13

Add-problem 42

A rid-unconditional-decision ,10

Adjust-agenda. 47

Adjnst-and-a.dd-rense 17

Assign- resources- to-so heal u le :_,0

C,'dcula.t,e- Direct.- Effect 21

Ca.[c;i la.t.<,-hulirecl.-( 'osl 22

Ca.lcu la.te-effec/;-a.nd-cnsts 20

Change-con dit, ional-decision :IS

Change-ohl- fea.t,u re 15

(I.ha.n go- problem +13

Cha.nge-tJ n con dii.ional-d P+'isinn 30

Copy-generic 16

C rea.te-a.ddi t.iona.l-uew-1,a.sks I S

Croa.te-an d-a.d d- new-t.a.sk- problem I.O

Customer-requiremenl.- i'esolu I.ion I

l)N<,te-d ecision-a.n d-r+,pla<'+, 27

Delete-old-fea.t,u r+, I1

Exploring-needs 5

Fiti<l-a,nd-a.dd-reusabl+,-n<_dr 2f;

(-;enera.t.e- problen is 35

[m plemen t- meeti nea-d<,<:isi+ms 37

hlterna.l-devetnpmenl. 2

Locate-decision ,I6

Loca.te-pa.rent. 45

[,oca.t.o-prohlrun ,1,1

Ma.ke-+lecision-nsi ng:- a.l I.Prtul.l.i v<,s :/(i

Ma.ke-node-a.n d-a,dd-i n f+_ 2s

M'odi fy-or-c rea,l:e-n ow- t,as k I

Modify-t, ask-node 12

Pick-node-link 25

R,ead-docu merit 9

R on d-just+i fi cn.l.ioll 10

I/.ea.d- nn(le- d esc ri pl, i+m 21

l_.equiremenl.s-fh, li nil.i_m (;

Review-a,genda, 48

R eview-meeting- relmr ts-an d- proKress 33

Review-reports-agenda.-and-sched,le 34

Select-a.n d-tea.d-node 2a

Sofl, wa.re-developnmn t 3

Sc_lve-prohlem a2

Transfer- task-to-prnhlem-space .3 I

[lnderstand- prol)lem-lin ks 7

[ Tnd ers t an d ing- nce<l s .1
Visit.- a.n d- rea.d- no<te ,_

S(fl't',varc Rctlsc W<.kslu_p, April 1993 35



I

I)cparlmcnt of Compulcr Scicucc

d

OI)U

add-agenda-problem

add-justification

add-reuseable-node

add-to-generic-list

ad d- to- modi fy-list

a.d d-to-new-list

add-to-notes

a.dd-to-ou t-list

a.dd-to-reporl,

add-to-reuse-list

a.dd-i1p-direct,-costs

a,dd- u p-indirect-cosl.

adjust-justification

a.djus t-reuse- task- problem

browsing-agenda.

calcula.te-node-size

calculate-risk-effort

ca.lcu la.te- ta.sk-problem s-effort.

ca./cula.te- ta.sk-problem s- sis k

ca.lcula.te-task-prohlems-size

caJcula.l,e- tota.l-node-size

change-description

con d ition a.1-d ecisio n

copy-new-generic-I.ask-pr_d_Iem

crea.te- new-problem-node

create- new-ta._k-problem

crea.te- task- prohlem

decision

delete-a.gen da.-pml_lem

delete-problem

delete- task- problmn

dependency-down

dependency-up

describe-a.lterna.tives

describe-problem

document-view

ema.cs-com ma.nds

fill-in-description

get-closu re-list-j u stil'y-to- form

get-effort- risk-size-estimates

get-parent-node

give-justifica.tions

.iustiff ca.tion-from

justi fi c a.t ion- I.o

key-s, Iq_roldems

li n k-j usti fica.l.io u

lo¢:a.l.e-problem
loca.te-decision

locate- pa.ren I
m a.k(,-d('cisinn

make- new- r_'pl a.conl ell I.

probl(,m

p rod u ce-sched ule

ma.d-d esc r ip Lion

rnsea.rch-problem

review-a.geuda.

st, view- re,port

r_,view-sched u le

scroll- view

seiccl.-a.ll,,l'llal.iv¢,s

skip
swil, ch- v'imv

In ke- a._e u dn.- i)rohl¢,m

I.ask

1._'i'111[11 axe- aL- lind e- ¢:]OSllre- relevan t- imdes

t. I'a.tl S fel'- t.('ll t a.l.ive-I;o- F)roble.lll IS pa.c_,

u neon dil.ion a.i-decision

w riu'-a n_l-liiJ k-docu mmltatiou

_OT"

S(d'[wa,c Rcu::c \V_lk._h¢q), April 1993 36



Preliminary Draft: 11/18/92

ATTACHMENT #2

Primary draft of the Process

Model for porting



Process Model

Writing Transformations

_eengineering -> taskCU > (PortinglEnhancingiTranslating) > system

?orting -> UnderstandingMA, SE > d.task_root:d.task_problem

AssessmentMA, SE > d.task_root > Change_decisions >d.task_root

Assign_resourcesMA, SE > d.schedule, d.agenda

Task_problem_solvingSE > {d.task_problem}

{d.agenda,d.schedule > Solve_problemsSE > d.agenda

Review_meeting > d.meeting_notes

Implement_meeting_decisions > d.schedule, d.agenda

Understanding -> Get familiar

Get_familiar -> (First_passIAdditional_pass)

First_pass -> (Read_manuallSample_targetlCompile_target)

Assessment -> /* for read manual choice */

source_manual:manual > readappendixSE >

idiosyncracies_source:idiosyncracies

target_manual:manual > read_appendixSE >

idiosyncracies_target:idiosyncracies

idiosyncracies(source/target) :idiosyncracies > compare_differencesSE

> list of transforms:transforms

list or transforms:transforms > Task_problem_solving

Task_problem_solving ->

original_source:source > r.open > r.ast:ast

FOR ALL x in list of transforms:transforms{

x> {write_single_transformationSE

test transformationSE

(debugSE I done)} >

transformation rule list:transformation}

transformation_rule_list:transformation > G_nerate_target



Process Model

Using Transformation

_ate_target ->

transformation rules:transformation > run rulesSE >

target_source:source

move_target_compile > (list or errors ( clean_compile)

FOR_ALLerrors in list of errors{

errors> {(write_trouble_reportSE I fix_manuallySE)}



Process Model Objects

Source = {lines of source code}

Manual = (reference guide, users guide, etc.)

Idiosyncracies = {language grammar rules or examples

specifying machine specific

implementations}

Ast = {abstract syntax tree}

Transforms = {mapping of idiosyncracies from one machine to

another}

Transformation = {rule for pattern matching to convert

existing pattern to new pattern}



ATTACHMENT #3

Meeting Notes



>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

Meeting Report: 1

Meeting Date: 26 March 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Dr. Kurt Maly
Dr. Christian Wild

Sooshma Bokil

Tamara Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 2:00 PM. He recommended

that Dr. Wild send a letter to the dean stating Ms.

Taylor's status as a student. This is to avoid the

question of a possible conflict of interest since she is

the representative from Paramax to the Decision Based

Software Design/Refinery working group.

B. Current Status Review:

No agenda was provided.

discussed.

The following issues/points were

. At Dr. Wild's request, Ms. Taylor questioned

Reasoning Systems as to the possibility of

recording line numbers in the abstract syntax trees

(ASTs) for a possible mapping between Refinery and

Decision Based Software Design (DBSD) . Reasoning

does maintain line numbers and offered four

possibilities for accessing. The line numbers are

not recorded in the AST. An attribute would need

to be added in order to map to the decision view.

Problem: Retaining Decision Structure through conversion to AST and back
>

> 2. Assuming the line number attribute is added, Dr.

> Maly questioned how the line numbers would be

> mapped back to the source and decision view once

> the transformation is done. Dr. Wild responded

> that DBSD will have to look at the transformation

> rule to see what happens and of course there will

> not always be a one to one mapping of line numbers

> to attributes as one decision can span multiple

> lines/nodes. He also stated that most

> transformations will probably be semantic

> therefore, decisions will remain across the board.

Problem: (child of the above) how to maintain precision in the

transformation process

3. Another area of concern that was discussed

Meeting Report
26 March 1992

Page 2

is how will the decision views be affected when

something is added during the transformation.

Initial thought is that this will require a manual



update to DBSD.
31em: also child of the above: how to instrument new code added by

nsformation process.

4. Areas of concern for DBSD are:

a. How to record the decisions that went into the

transformation rules themselves,

bo Once the transformation is complete, how will

the manual fixes be implemented,

C . When new source is introduced during the

transformation, what role does DBSD take.

o Dr. Maly questioned the ability to start and stop

during the transformation process and if this is

possible how integrity would be maintained across

the views.

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

o

7 °

8.

9.

I.

II.

The above discussion was in relation to adding DBSD

to existing applications and to providing hooks

between DBSD and Refinery. Of another issue is if

DBSD is already existent in the application being

transformed. If this is the case, it was reported

by Dr. Wild that you would have gaps and loose

precision but not to a drastic measure.

Discussion moved to the task at hand for Paramax.

Ms. Taylor reported that there is a definite need

in the industry to reuse existing code. Customers

want to move to take advantage of new hardware

technologies without redoing software initially.

Their primary goal is to move to the new "box" then

revamp using CASE technologies to optimize once

there. There is no acceptance for down time on

existing applications. This is the driving force

behind exploring the capabilities of Refinery.

Dr. Maly reported that DBSD is not related to the

functional view but to the decision view. This

needs clarification.

Future meetings will be held at 1:30 PM on

Thursdays with the exception of the next meeting
which will be on 31 March 1992 at I0:00 AM.

Meeting Agenda

2

Opening Remarks

A. Old Dominion

B. Paramax

Current Status Review

A. DBSD

B. Refinery

31 March 1992



>
>
>
>
>

III. Upcoming Events

Next Meeting (Proposed: Thursday, 9 April 1992,
1:30 PM, Old Dominion University)



From wild Mon Apt 20 18:00:18 1992

Status: RO

X-VM-v5-Data: ([nil nil nil nil nil nil nil nil nil]

[nil nil nil nil nil nil nil nil nil nil nil nil "^From:" nil nil nil])

Received: from plevin (snapper-bb.cs.odu.edu) by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA15290; Mon, 20 Apt 92 18:00:13 EDT

Received: by plevin (4.1/lanleaf2.4)

id AA00726; Mon, 20 Apt 92 18:03:36 EDT

Message-Id: <9204202203.AA00726@plevin>

References: <9204202016.AA20740@oswald.cs.odu.edu>

From: Chris Wild <wild>

To: Tamara Taylor <taylor>

Cc: wild, maly, bokil, rosca

Date: Mon, 20 Apr 92 18:03:36 EDT

Tamara Taylor writes:

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

Meeting Report: 2

Meeting Date: 9 April 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion

a.

B.

Paramax

Kurt Maly

Christian Wild

Sooshma Bokil

Tamara Taylor

Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

Current Status Review:

The topics on the provided agenda were discussed.

i • DBSD.

Tammy provided the minutes and Chris restructured

the problems into the DBSD format through D-

HyperCase. There were a total of six problems

named wl-w6. Discussion centered on these six

problem/decision definitions.

wl - Reengineering.

Kurt felt that the wl problem encompasses too many

issues and that Chris is "prettying up" because

once documented you are now accountable. Kurt

feels that the reengineering capability using

Refinery is a given as that is what the company is

paying for and should be stated as such. As for

the alternatives, Kurt was not aware that Refinery

is being evaluated during this process and the

possibility exists for Paramax to disband with use

of this tool if it is not a desirable and cost

effective approach to reengineering. Tammy stated

that although this is a remote possibility, the

possibility does exist after seeing how well the

transformation process performs and how easy the

methodology developed will be to implement. The

decision to use Refine is really dependent upon the

answers to the following two questions:



>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

Meeting Report 2

9 April 1992

Page 2

I. Is transformation methodology appropriately

mature for use by Paramax? and

2. If so, is Refine the way to go?

Tammy stated that Paramax feels relatively

comfortable that Refine is the best that is

available commercially for a transformation

capability. She also stated that she had spoken

with James Boyle of Argonne National Laboratories

who has been working in the transformation arena

for well over ten years. Mr. Boyle also feels that

Refine is the best transformation system available

commercially. He did however, send papers on the

TAMPR system which is a transformation system he

works on. Tammy has provided copies of these

papers to Chris and both he and she are currently

reviewing from a methodology standpoint. Kurt says

that when we are writing problems they need to be

stated as a problem and not as an assertion.

w2 - Preserve decision structure in AST.

Let's assume that Refinery is the way to go and we

are proceeding along that path. W2 addresses

preserving the decision structure in the AST. This

requires annotating the AST. Mapping is known

because Refine is a transformation system. There

is therefore a tie between the lines being

processed in the source code and Refine. Refine

will have to be modified to mark the lines in order

to determine which transformed lines came from

which original lines. It was decided after much

discussion that this was the best decision

eventhough it will require modifying Refine. Kurt

questioned whether we should institute as policy a

requirement for discussion of the alternatives.

This would only be feasible if it was low cost and

easily accessible. One possibility suggested by

Chris was to use audio to record the conversations

and then you could access as necessary. It was

decided that audio is not feasible without digital

access and that is not readily available. It was

also decided that the alternatives should just be

expanded sufficiently to state their consideration.

Page 3



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

w3 - Precision of decision transformation.
This is an active problem and has no decision as of
yet.

w4 - New code added by transformation rule.
This needs further study.

w5 - Transformation rule decision views.
oblem/decisions outlined in wl-w6.

WI, w2, w5 and w6 are considered root problems and
w2 has as sub problems w3 and w4.

Of issue, is how to integrate DBSDinto Refinery
and to realize that there is not just one decision
structure. The transformation rules have decisionow how the proc,
affect our decisions. Tammyhas the action item to
outline this prior to the next meeting. Sooshma
has the action item to update the wl-w6 decisions
and links to the decisions prior to the next
meeting. A point well made during this meeting is
that there are several process/decision views tnsformation rules,

3. Decisions concerning code that didn't pass
the transformation, and
4. Decisions about the entire transformation
methodology itself.

Tammyalso has the action item to graph these
decision views prior to the next meeting, ges of DBSD
on this task. They are

I. Once a transformation is performed, use
DBSDto update what didn't pass the
transformation rules,
2. Use DBSDfor new code added during the
transformation, and
3. Use Diews.

Sooshmawill update the decisions and links to wl-
w6.



I •

Meeting Agenda

3

Opening Remarks

A. Old Dominion

B. Paramax

16 April 1992



Meeting Report :3

Meeting Date : 16 April, 1992

Meeting Location : Old Dominion University,

Computer Science Department.

A. Opening Remarks :

Dr. Maly opened the meeting at 1.30 PM.

B. Current Status RLNiew :

1. Dr. Wild discussed the problems W7 - W11 that went into preparing file agenda.

Coding for W8 (removing from agenda list) and W11 (adding to agenda list) has been

done. Currently presentation problem is being looked into.

2. Dr. Maly raised the point of interproject visibility i.e. when a system is being designed

using DHC as a tool, is tile designer allowed to look at

a) a whole set of decisions

b) partial set of decisions

c) no decisions

that were developed by someone else to develop the tool itself ??

3. The problem of 'how much visibility' of the above point depends on the 'context' of tile

projects.

Our task is to translate a specific Cobol program into Ada.

Graphically,
Translator

Cobol Process-model Ada

DIIC



V

a) Is the user allowed to change Process-model ?

b) Is the user allowed to look into Translator ?

c) Is the user allowed to look into DHC ?

i.e. when we are solving problems by using solutions of other problems, how much do we need to
know about those solutions ?

In the next meeting we'll be discussing about

a) Translation of decision structure thru' refinery.

b) Functions of DHC.



Meeting Report: 4

Meeting Date: 23 April 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Christian Wild

Sooshma Bokil

Tamara Taylor

A. Opening Remarks:

Dr. Wild opened the meeting at 1:30 PM.

B. Current Status Review:

The topics on the provided agenda were discussed•

, Chris stated that we needed to discuss what was

needed from Reasoning Systems to connect the DBSD

structure. It was decided that the grammar is

definitely needed. Tammy will provide the point of

contact for this and will additionally ask

Reasoning if it is possible for them to incorporate
the line number attribute into the AST.

• Tammy provided a handout on the process

possibilities of Refinery and Refinery with DBSD.

We went over all ten pages and made changes to page

5. The area of change is #3 which is the decision

views attached to the target source including

a. decision views attached to original source
b. decision views attached to untransformed

code

c. decision views attached to new code

generated during the transformation

d. mapping of decision views attached to
transformation rules to code.

Please see handout for further detail. We deleted

3d as although it is still open for discussion, the

possibilities of implementing this are remote due

to the robustness of the requirement. We added a
fifth decision view which encompasses decisions

made on DHC in order to integrate with Refinery.

We also discussed 3b as this is a new problem for

DHC and the area of how to handle this needs to be



addressed.
handling 3b.

There are three possibilities for
They are

Meeting Report 4
23 April 1992

Page 2

i. Manually update,
2. Refinery gives some assistance, and
3. fully integrated.

Chris stated that of the three choices manually
updating is unacceptable. We are not sure what
assistance Refinery gives at this point. In light
of this, Tammy has the action item to find out what
Refinery does with untransformed code. She also
has the action item to write out the process for
the development methodology (#15 page 3)

Action Items:
Tammy will question Reasoning as to whether they
will be able to annotate object base with line
numbers.
Tammy will find out what Refinery does with
untransformed code.
Tammy will provide point of contact at
Kestrell/Reasoning for obtaining a university copy
of Refine.



tom taylor Mon May ii 16:18:06 1992

tatus: RO

-VM-v5-Data: ([nil nil nil nil nil nil nil nil nil]

["3767" "Mon" "ii" "May" "92" "16:18:01" "EDT" "Tamara Taylor" "taylor" nil

eceived: from ceawlin.cs.odu.edu by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA01648; Mon, Ii May 92 16:18:01 EDT

.eceived: by ceawlin.cs.odu.edu (4.1/lanleaf2.4)

id AA28824; Mon, ii May 92 16:18:01 EDT

lessage-Id: <9205112018.AA28824@ceawlin.cs.odu.edu>

"tom: Tamara Taylor <taylor>

to: wild

>ate: Mon, Ii May 92 16:18:01 EDT

Meeting Report: 5

Meeting Date: 7 May 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Ma!y

Chris Wild

Sooshma Bokil

Tammy Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

The topics on the provided agenda were discussed.

i. We collectively discussed the Refinery/DBSD process

possibilities focusing on page 5 of the handout

provided by Tammy at the last meeting. The outcome

of the discussion is that we are trying to solve a

reengineering problem of how to incorporate

Refinery and DBSd. This task initially encompasses

the following:

a. Reengineering problem - Need a system for

transforming existing applications and for

recording the decisions involved.

Solution: Develop REENG a reengineering tool

incorporating DBSD/Refinery.

-- Project directory /home/dhc/ReEngineering created

b. DHC Emacs problem - While performing a.,

exercise DHC locating problem areas.

Solution: Improve DHC by making appropriate

modifications.

-- Project directory /home/dhc/version2/DHG-emacs

c. Transformation problem - Automate porting

Cobol code including DHC from one machine to

another.

Solution: Write Refinery transformation rules

to translate cobol and DHC statements.

-- Project directory /home/dhc/version2/H2HTransformation



d. Instance of c - Verify correctness of

rules written.

Solution: Instantiate c by translating

Meeting Report 5

7 May 1992

Page 2

specific programs from Harris to Microfocos

arena.

-- Project Directory /home/dhc/SnapPort

Action items resulting from this discussion are for

Tammy to write up problems in the minutes, Chris to

enter problems into DHC and to teach everyone else

how to use DHC, and for Sooshma to enter the

process model for solutions.

2. Tammy is to ask an additional question of

Reasoning Systems concerning if there is a syntax

tree construct that the unparser doesn't
understand.

3. The outcome of the meeting was that we appear

to have a better definition of the problem/problems

we are solving and a narrower set of tasks from

which to develop the transformation methodology.

Action Items:

Tammy will write up the four problems.

Chris will enter problems into DHC.
Chris will teach others how to use DHC.

Sooshma will enter process model for solutions.

Tammy will correspond with Reasoning on specific

questions.

Meeting Agenda



I °

II.

Opening Remarks

A. Old Dominion

B. Paramax

Current Status Review

A. DBSD

B. Refinery

14 May 1992

III. Upcoming Events

Next Meeting (Proposed: Thursday, 21 May 1992, 1:30

-- what happenend to this thursday?



Meeting Report: 6

Meeting Date: 14 May 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly
Chris Wild

Daniella ??

Tammy Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

The topics on the provided agenda were discussed.

i • We discussed necessary revisions to a paper that

will appear in a software magazine this fall. The

paper describes how DHC is used in the DBSD arena.

Kurt would like to see more comments in the paper

about what the benefits of using DHC are. It was

decided to replace the term "documentation" with

"project memory" throughout the paper. It was also

decided that the paper needs more hard facts. By

this we mean to state that we are using DHC and how

it is p_oviding us with a m,,Itiview of our problems

and decisions. Additionally, one example needs to

be given and expanded throughout the paper. Kurt

would also like to add tables and diagrams as they

will more than likely entice interest and prompt

reading of the verbiage. One high point for credit
worthiness is to state claims of which we are

claiming that using DHC will save you some number

of man years in performing maintenance on a

project. We want to stress in this paper that DHC

provides a connected system from the specifications

through the coding effort and the ability to

retrace your decisions and their benefits and/or

side effects. Daniella and Tammy will participate

in updating this paper. Tammy will provide the

commercial side as to the numbers of man years that

are spent on maintenance etc. and Daniella will

become the resident expert on the underlying

program structure of DHC.

I I II I ,



r

. Discussion moved to the task Tammy is undertaking

to initially use Refine to port Cobol from one
machine to the other. Kurt sees no need for

transformation rules for this task. He believes

that the syntax tree will not change and that there
is therefore no need for a rule. He also doubts

that there is an unparser. Tammy of course

disputes this and says that we do have an unparser
and that there is a need to do a transformation

rule at this stage eventhough this appears to be a

simple problem. Tammy is tasked to question

Reasoning about this.

The action items from last week will continue to be

worked on as the problem layout is complete but

instruction still needs to be given on DHC and the

solution process still needs to be modeled.

Action Items:

Chris will enter problems into DHC.
Chris will teach others how to use DHC.

Sooshma will enter process model for solutions.

Tammy will correspond with Reasoning on specific
questions.

Next meeting: (Proposed Thursday 21 May 1992, 1:30

PM Old Dominion University)



From taylor Fri Jun 26 11:21:29 1992

Status: RO

X-VM-v5-Data: ([nil nil nil nil nil nil nil nil nil]

[nil nil nil nil nil nil nil nil nil nil nil nil "^From:" nil nil nil])

Received: from horsa.cs.odu.edu by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA14825; Fri, 26 Jun 92 11:21:28 EDT

Received: by horsa.cs.odu.edu (4.1/lanleaf2.4)

id AA05775; Fri, 26 Jun 92 11:20:54 EDT

Message-Id: <920626i520.AA05775@horsa.cs.odu.edu>

From: Tamara Taylor <taylor>

To: bokil, maly, rosca, taylor, wild

Date: Fri, 26 Jun 92 11:20:54 EDT

Meeting Report: 8

Meeting Date: 24 June 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly

Chris Wild

Tanuny Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

Please note that there have been no minutes provided for

6/10/92 and 6/17/92 meetings.

l . Tammy reported on her trip to Reasoning Systems for

advanced training. She said she feels more

comfortable with the tool but that it is a large

tool with varied capabilities and there is still a

lot to learn. She did perform some transformations

while she was in class on code specific to her

task. She additionally held the line numbers from

a D HC file and feels she will be able to transform

the needed information from the D-HC files. She

will be completing the transformation rules for her

specific task immediately as well as looking at D-

HC for where it will be useful in this project.

Discussion proceeded to our goals for the summer

which include all parties (Daniella, Soosma and

Tammy) being familiar with both D-HC and Refine.

Tammy is the process model and Refine person and

Daniella is the D-HC person. It is not yet

determined where Soosma will concentrate her

efforts. Daniella will get the next iteration of

D-HC up and running in this time frame as well. At

the end of the summer, we will have a more concrete

process model and will know how both D-HC and

Refine can be utilized on a project. We will

evaluate them separately and as a package.

The agenda for the next meeting will concentrate on



reviewing the process models for the machine port
and for embedding SQL statements into ported code.

The action items to be completed prior to the next
meeting are:

i. Kurt, Chris and Tammywill review existing
process models and update/detail accordingly.

2. Tammywill obtain email address for Chris for
persons to contact that are using Refine in classes
being taught at Oregon State, Naval Post Grad
School and Air Force Institute of Technology
(AFIT) .

3. Tammywill obtain status on slip protocol
connection as it needs to be completed prior to
running windows across the modem.

4. Chris should provide an update on the paper

which is to be published in the fall.

I o

II.

Ill .

Meeting Agenda

Ii

Opening Remarks

A. Old Dominion

B. Paramax

Current Status Review (Action Items)

A. DBSD

B. Refinery

Upcoming Events

1 July 1992



Next Meeting (Proposed: Wednesday, 8 July 1992,
1:30 PM, Old Dominion University)



From taylor Thu Jul 2 11:44:01 1992
Status: RO
X-VM-v5-Data: ([nil nil nil nil nil nil nil nil nil]

[nil nil nil nil nil nil nil nil nil nil nil nil "^From:" nil nil nil])
Received: from penda.cs.odu.edu by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA08112; Thu, 2 Jul 92 11:43:59 EDT
Received: by penda.cs.odu.edu (4.1/lanleaf2.4)

id AA09462; Thu, 2 Jul 92 11:44:16 EDT
Message-Id: <9207021544.AA09462@penda.cs.odu.edu>
From: Tamara Taylor <taylor>
To: maly, rosca, taylor, wild, zhang_j
Date: Thu, 2 Jul 92 11:44:16 EDT

Meeting Report: 13

Meeting Date: 1 July 1992
Meeting Location: Old Dominion University

Computer Science Department

Attendees:

A.

B,

Old Dominion Paramax

Kurt Maly

Chris Wild

Daniella Rosca

Jing Yuan Zhang

Tammy Taylor

Opening Remarks:

Dr. Ma!y opened the meeting at 1:30 PM.

Please note for history purposes that these minutes

represent our thirteenth meeting and that is reflected on

the meeting report number. Minutes were provided and

numbered correctly for meetings one through six. No

minutes were provided for meetings seven through eleven.

Minutes were provided for meeting twelve but were

numbered incorrectly as meeting report eight. In the

future minutes will be numbered according to the

chronological number of our meeting just as this one is

numbered thirteen.

Current Status Review:

Kurt provided a handout with an updated version of the

reengineering problem and it's sub problems entered in D-

HC and a process model of the reengineering problem using

the context free grammar. Discussion revolved around the

problems/model and the handout was updated accordingly.

It was decided that the reengineering problem would only

cover porting, enhancing and translating. It was also

decided that the first pass of any of the three areas

would be different than additional passes. It was

additionally decided that part of the first pass is a

"getting familiar with" stage. Update to format for

context free grammar are that we will use activities with

an agent subscript and objects will be denoted with a

tool and a period (e.g.d.convention for something D-HC

knows about, can modify or produce.) Daniella will

update the D-HC problems and Tammy will update the

process model.



The agenda for the next meeting will concentrate on
reviewing the updated D-HC problems and the updated
process model.

The action items to be completed prior to the next
meeting are:

i. Daniella to update problem definition in C-HC.

2. Tammyto update process model.

3. Chris should provide an update on the paper
which is to be published in the fall.

4. Tammyto provide updated status on email
addresses for instructors of Refine.

I o

II.

II!.

Meeting Agenda

14

8 July 1992

Opening Remarks

A. Old Dominion

B. Paramax

Current Status Review (Action Items)

A. DBSD

B. Refinery

Upcoming Events

Next Meeting (Proposed: Wednesday, 15 July 1992,

1:30 PM, Old Dominion University)



Meeting Report: 14

Meeting Date: 8 July 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly

Chris Wild

Daniella Rosca

Jing Yuan Zhang

Tammy Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

It was decided that we need a process model for D-HC that

is more reflective of what is existing and what is to

exist in the next iteration. The current D-HC process
model is an ideal model that is to be worked toward but

is not reflective of the current state. Discussion

centered on this topic with several action items being

assigned. Additionally, we defined a process model as

being "rules of interaction among the agents of change be

they tools, humans, etc." We will also need D-HC to

incorporate a view of the process model in the decision

view so that you can assess where the process model needs

to change when a change occurs in a tool/function modeled

by the process model. This view also needs to be

filtered according to individual needs.

The following action items resulted from this meeting:

i , Chris will provide a list of what will be added to

D HC from the existing process model and a previous

functional grouping.

• Chris will propose what functionality will be

provided for next iteration and will work with

Daniella and Jing Yuan on updating the process
model.

. Chris will rearrange the existing
structure to accommodate Kurt's

reengineering problems/process model.

directory

proposed
He will



Note:

•

.

•

•

•

additionally input the problems and process model

into D-HC as a demo to those of us who will be

working with it.

Daniella and Jing Yuan will enter onto the agenda

the task of printing out documentation and of

filtering views. They will additionally work on

the code for these two items though not prior to

the next meeting.

Tammy will update the process model according to

the standard conventions and will rework again

according to specific objects.

Everyone will keep a notebook of what they are

doing in terms of activities and record the when,

where, what and how long that is involved.

Further discussion needed on reuse of D-HC from one

task to another. Will this be implemented or not?

Everyone will use D-HC and become familiar so as to

make recommendations for update. Use the

-/dhc/demo directory and "reset" prior to use to

get familiar with.

Next meeting is Thursday, July 16, 1992, 2:30 p.m.

j



rrr 0000 SSSS CCCC _dda

r 0 o S $ C C

o o S$ C _dddd

0 0 SS C d 4

0 0 $ S C ¢ a ad

000o $$ss CCCC daaa d

_ct 20 19:32 1992 standard input Pdge l

:rum taylor Tue Ju! 21 10:I0:29 1992

[0: idly, roscd, t_ylor, wild. zhang_ j

Meeting Report: 15

Meeting Date: 16 JuSy 1992

Netting Location: Old Oominion University

Computer _ctence Department

Attendees:

A.

Old Oominion PJramJ=

Kurt Maly fammy )jyior

Chris Wild

Oaniella Rosca

Jing Yuan Zhang

Opening Remarks:

Or, Naly opened the meeting 4t J:UU I)M.

Current Status Heview:

Chris had listed the existing functiondllLy of u-atE along

with a proposal of what should be provided in the next

iteration. ]he proposal was diSCuSSed and will be

elaOorated on at the next meeting.

It wa decided that reuse of tasks In O-tiC wi|] nut. be

lm_lcqented in the next iteration. It _dS Jlsu decided

that the problem and decision space in D-I|C shoul_ be

separate. Additionally. we need a form for recording

what we are working on In order to gJther Statl$t)caJ

information while _rking outside of O-lit.

We will review the updated process m_dcl Jt th< ne=t

meeting.

lhe following motion Items resulted rrom th_s meeting;

l, Chris will provide a hard COpy mild/Or file ladle of

the updated process model wtl_Ch _lttalfl_ ¢_ls_ing

functiona|ity.

?, Chris will provide a hard Copy and/OF flit fldie Or

proposed functionality for next II_rJtion of O-14C.

3. OanJelld will move dl} depend¢¢lcy _nd JustiitcdtlOfl

links related to the problem to _lthln the problem

space, lhese will be separate from the d¢_lSlOfl.

4, [aBly will provide d form to be reviewed =t the

neat mee(t_iq w_iCh will Jcd ¢. cec,_rdln_ wI_( they

are workJllg on in reidtlo, tO I)-IIC/Hutlnet'?. 1his

is tO be used to statistical hurpu_e_.

|he following uction items remain from ln¢ _ Jul_ 92

II III



meet

4.

in9:

Chris viii reurrunqe the e,$sttn 9 dlrectury

Structure to accomlodate Kurt'S prol_osed

reengineering probleaslprocess model, fl_ _iIl

additionally input the problems and process model

into O-HC as a deno to those of us who wili be

working ,ith it.

DanielIa and Jing Vuan viii enter onto the dgenda

the task of printing out documentation and of

filtering views. They viii additionally work on

the code for these tbo Items though not prior to

the next meeting.

lammy will update the process model accordlnq to

t 20 19:32 199Z standard input Page 2

the standard conventions and will rework =HJIn

according to specific objects.

8. Everyone viii use O-HC and become familial so as to

make recommendations for update. Use th_

-/dhc/demo directory and =reset" _r'lOr tu USe tO

get familiar with.

Note: Next meeting is WedneSday, July 22, 199J, t:_ p.m.

Neeting Agenda

15

22 July 1992

l, Opening Remarks

A, Old Oomlnlon

8, Parana_

II. Current StdtUS Nevlew (Ac¢iuII 1(¢1, I

A. OBSO

8, Refinery

Ill. Upcoming Events

Next Neetlng (Proposed: _ednesd_y, 29 Jul) 199Z.

1;30 PM, Old Dominion University)



/ Meeting Report: 16

Meeting Date: 22 July 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly
Chris Wild

Daniella Rosca

Jing Yuan Zhang

Tammy Taylor

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

The first topic discussed was how do we logg objects

that we manipulate and the activities we accomplish,

especially when we are outside DHC. Here we have to

make a decision about the fact that the tool should

support everything (including outside DHC).

fl

The form we need should state the activities, the time

spent on each of them, the order of activities. We have

to choose between:

I. a form of the process model and checkout the steps

that I am doing.

2. a list of the terminal activities from the process

model. In this case I loose the sequence of activities

and the objects on which I do the activities.

Another topic of the meeting was the visibility of the

decisions, i.e. if we make a decision on a transformation

rule do we make it visible on the target code?

Also we have discussed the subject of identifying a problem

at one level and solving it at another level ( the system's

or the user's levels). We haven' made a decision yet on

this subject.

On this subject Chris has come with an example: the variables

in a cicle in FORTRAN. What to do? I can write a transformation

rule for that and tell the user about it, or do it automatically

(without telling anything to the users) and realize that this

thing may be inefficient for a user that doesn't need this

facility too much.

It should exist the possibility of filtering the views or part
of a view I'm interested to see.

The following action items resulted from this meeting:

i. Daniela and Jing Yuang will continue to work on the agenda

functions in order to extend the actual facilities of the

system.

2. Tammy will update the form she presented as we have discussed.



eting Report: 19

eting Date: 9/23/92
_eting Location: ODU

.tendees:

ODU:
Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

Paramax:

he meeting began at 2:15. Chenglin (Lin) was introduced. Names and passwords

'ere exchanged. NB: <cowles> <rosca> <maly> <zhang_c> <taylor>

>ermissions are needed for Cowles and Zhang for the /dhc directory. Chris will

3ee Ajay to see that it is done. Zhang will also be added to the "faculty" Email

fist.

3r. Maly began a discussion on the minutes of the previous meeting. He suggested

that the phrase (found under B:) "charts with problems and decisions for whatever

we will develop" be changed to read "whatever we will and have developed". Over th_

course of this discussion, the following points were made:

-Definitions of DBSD and re-engineering (Refinery) were restated. Refinery

is used in a graphical environment and is used to write rules. DBSD is ODU's proto_

it's another tool to be used with Refinery. We wish to use both of these in a unif

environment.

-A problem: in porting source-code to another machine (say, A to B), two pe_

(sayr the user and the porting engineer) may have different "decision views" in sou:

How do we support different decision structures on the same source code? For examp

single LOC may have 2 decisions attatched to it; it depends on who is viewing it (tl

user or the engineer) as to which decision(s) are shown with this LOCo

-In the above example, we do not wish to have both operations active at the

same time; i.e., only when the code is completely ported to machine B is it then tu:

over to the user. (Also: might the engineer sometimes need to look at the code and

decision structure from the user's point of view?)

The following points & observations were also made:

-All project problems are to be entered into the problem space and agenda A:

COME UP.

-We need to evaluate DHC; make it more stable and useful enough.

some functionality.

Possibly;

-Make problem descriptions more in depth from now on.

-Add to the chart what Daniella has done.

-Make and keep notes regarding conditional decisions; add to the DHC code s_

that we are able to backtrack decisions.

The meeting was quickly ended at 3:15 pm, as we all rushed off to the colloquium.



D

From rosca Wed Oct 14 10:41:16 1992

To: maly

Subject: meeting notes21

Cc: rosca, cowles, taylor, zhang_c

Meeting Report: 21

Meeting Date: 7 October 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly

Chris Wild

Daniella Rosca

Chris Cowles

Chenglin Zhang

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

First we have discussed the deliverables for this phase of the

project. They will be: the paper from '91, the paper from '92(IFIP),

the viewgraphs for boths and the meeting notes.

In this meeting we have discussed the objectives of our project

for the following months to come. Basically, we have addressed the

topic of the integration of DHC and Refinery. We have two

possibilities: make them loosely coupled, seeing each other like a

black box that executes its job sequential in time with respect to

the other tool or make them tightly coupled.

To answer this question we have to answer first the question: are

the transformation rules built using DHC or Refinery? If we use

DHC for writing the transformation rules we will use Refinery

afterwards as a compiler for the transformation rules.

4

For a tightly coupled version we will need to embed DHC in Refinery,

to consider each of the Refinery functions as black boxes and wrap

them in DHC functions, if they are sufficiently small. Also we would
need that this functions be noninteractive so that we can have the

control of the user actions at the DHC level. For this we would need

a deep understanding of the source of Refinery, to figure out how

to make the link with DHC. We would need from Paramax a detailed

list of capabilities and functions of Refinery.

Dr. Wild said that from the discussions with Tammy resulted that

from the past and current experience it seems to be no need for

a tightly coupled version. Anyway we need to ask them again and to

thoroughly analize which are the gains from writing the

transformation rules in DHC and which are the gains from writing

them in Refinery.

Another question that we have to ask Paramax is if they want to

support also the reverse porting, in the case when is needed an

enhancement in the ported program. Do they want to maintain the

2 versions of the program consistent, so we should have the

capability of going back and forth between the 2 versions of a

program, or once we have done the porting, the older version will

not be considered anymore.



From the discussion resulted the following guide lines for the
future development of DHC:
- add the filters for different views:

- for porting engineers
- for enhancing engineers
- for project managers

- develop new evaluation methods, new measures to have automatic
statistics.

- to enhance the existing process model.

D

I ,

Meeting Agenda

21

Opening Remarks

A. Old Dominion

B. Paramax

7 October 1992

II.

III.

Current Status Review (Action Items)

A. DBSD

B. Refinery

Upcoming Events

Next Meeting (Proposed: Wednesday, 14 October 1992,

1:00 PM, Old Dominion University)



_owles WedOct 14 14:49:36 1992
osca
ct: last meeting

:nclosing the minutes i've written so far. Do you think there is more
i should add? Some things i admit, i just didn't get. I don't expect

_o write the minutes for me; but let me know if you have any comments.
Lso, what waas it the maly was calling the Navy division that Paramax

3 with? was it NAVMEX or something?

Meeting Report: 22

Meeting Date: 14 October 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion

Kurt Maly

Daniella Rosca

Chris Cowles

Chenglin Zhang

Paramax

Maly opened the meeting at i:I0 PM.

_ris and Lin are currently i) reading the .el files, 2) continuing with

iSP, and 3) learning to run the DHC demo. Dr Maly would like us, within

;o weeks, to I) be more familiar with DHC, 2) have a reasonable idea of the

)de structure, and 3) be close to being able to make modifications in DHC.

aniella is to put together the report to Paramax. She needs to I) gather

he material, 2) start to write a cover letter, and 3) have a particular

action-list". We will request of Tammy Taylor a list of terminals and non-

erminals in Refinery. November first is the target date to submit this

eport.

)ur next meeting will be on Tuesday (Oct. 20th) at !I am. due to a conflict.

for our other regular Wednesday meetings, the 1 pm time is firm, at least for

=he time being.

Paramax's task (ie., Tammy's) is to use Refinery to port code. Our tasks is

to show that we can take their output in whatever form, and complete the

process of transforming it into a complete second form of the code (eg., in

COBOL). We want to show that DHC is a useful tool for porting - to complete

the transportation of that (COBOL) program.

As regards our marketing efforts, we would like to hear from users (Paramax,

Navy) about such things as knowing how many languages and ships are involved.

In writing down all Problems in the overall Problem Space: do we face the

problem of knowing whether or not this Problem has already been defined in

the Problem Space? Is a Problem part of a larger Problem Structure? Where

does it fit into the Problem Space? It seems that one has to know the entire

Problem Space in order to know where this Problem fits in. We note that

every problem being solved is tied to a requirement.

Since we all seem at this point to have welL-defined tasks to do, the

meeting was ended at 2:10 pm.



From rosca Tue Oct 27 22:20:15 1992
Received: from ramses.cs.odu.edu by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA26895; Tue, 27 Oct 92 22:20:13 EST
Received: by ramses.cs.odu.edu (4.1/lan!eaf2.4)

id AA00416; Tue, 27 Oct 92 22:28:10 EST
Message-Id: <9210280328.AA00416@ramses.cs.odu.edu>
Date: Tue, 27 Oct 92 22:28:10 EST
From: Daniela Rosca <rosca>
To: maly
Subject: meet23.notes
Cc: rosca, cowles, zhang_c
Status: R

Meeting Report: 23

Meeting Date: Oct. 21 1992
Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

A. Opening Remarks:

Dr. Ma!y opened the meeting at 1:00 PM.

B. Current Status Review:

We looked over the report and cover letter prepared by Daniela for

Paramax. We need to add a table of contents and a complete chart of

the Reengineering problem with the corespondence between problems

and descriptions.

In the report we have to put explicitly references to the

attachements of the document and to have separate chapter for each

main topic.

We have also discussed the specific questions to ask Paramax about.

They concern mainly market information needed in taking our decisions.

The following action items resulted from this meeting:

I. put togheter the chart of the Reengineering problem.

2. upgrade the report according to the chart.

3. ask Tammy all the information necessary for completing items 1 and

2.



I •

II.

II! .

Meeting Agenda

23

Oct.21 1992

Opening Remarks

A. Old Dominion

B. Paramax

Current Status Review (Action Items)

A. DBSD

B. Refinery

Upcoming Events

Next Meeting (Proposed: Wednesday, Oct. 28 1992,

1:00 PM, Old Dominion University)



_mzhang_c WedNov Ii 12:44:31 1992
: taylor, cowles, rosca, maly

_ject: meeting note 24, final

Meeting Report: 24

Meeting Date: 28 October 1992

Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion Paramax

Kurt Maly

Daniella Rosca

Chris Cowles

Chenglin Zhang

r. Maly opened the meeting at 2:15 PM.

aniella, Chris and Lin prepared a chart of the reengineering problem space

hich we had defined so far for the meeting. The following discussion was

ased on the chart.

r. Maly pointed out that some problems, such as market future and the process

,f reenigneering to Paramax, were missing and reemphasized the importance that

_very problem, whether it is currently linked or not, should go into the chart.

_he evaluation of dhc, Refinary, and process model is not the problem of re-

_ngineering. As far as reengineering is concerned, we have to study its

nethodology, process model, and supporting tools. We have to make a decison

)n such alternatives as i) use dhc alone; 2) use Refinary alone; 3) use them

9oth. If we choose the last alternative, we have to decide if they are looselycoupl,

In a loosely-coupled approach, we have to l)upgrade dhc; 2)get more knowledge

9n Refinary; and 3)determine the interface between dhc and Refinary. Here we

--Moron Refinary; and 3)determine the interface between dhc and Refinary. Here we

need more information from Tammy:

I) reengineering process in Paramax;

2) pros and cons of Refinary.

We spent some time on how to reuse solutions if the coming problem is the same

as or similar to a problem in the problem space. Cut-and-paste seems to be a

good strategy. Anyway, we have to make out how to build the reuse machanism

into the dhc or Refinary process model.

We reached the following convensions for our future charts:

i) The text in every node of the chart should contain the name of the corrres-

reference between the chart and .pd/.dd files.

2) The up and down links in decisions (UL and DL) will be dropped out because

all the information will be organized around the problem space and there are

in fact no links between decision nodes.

3) We do not have to require that every problem node has a corresponding

decision node. In fact, we make a decision only when there are several

alternatives.

4) We may add some mark symbols to problem nodes to indicate their solution

status.

po_

Some problems remain:

i) How to generate unique identities for problems and decisions. The current

practice in dhc is to use the first character of login name with a number.

This should be changed.

2) How to show output of problem solving in the chart.



3) How to sort the problem and decision spaces according to some specific
criteria.

Because there are some things unclear to us about market and Paramax, we will conceJ
chart. Wewill have an upgrated chart for the next meeting.

The meeting was ended at 3:50 pm.



Meeting Report: 25

Meeting Date: November 13, 1992
Meeting Location: Old Dominion University

Computer Science Department

Attendees:

Old Dominion

Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

Paramax

TammyTaylor

Dr. Maly opened the meeting at 9:30 am.

The focus of this meeting was to review and update the Chart and Report to
be sent to Paramax.

For the Report, a Table of Contents is needed; previous meeting notes and
the Chart are to be included. In the Chart, our problem is the DBSDparadigm
and what we are doing for the Paramax Reengineering problem. Paramax problems
include: what's a reasonable tool for porting/enhancing/transformation, and the
need of a Market Study to decide how much to emphasize each. We have chosen,
as of now - due to the unavailability of a Market Study, DHCand Refinery,
loosely coupled.

As for the Chart's alternatives, we will add only the major ones. We also
need to shade in (in xfig) all the outputs. We will "freeze in" today's changes
in the Chart as part of the overall Report.

Some items not yet addressed in the Chart include: i) using it as a quick
reference to problem decisions, and 2) adding problem names in the existing boxes
to be used as an index. All of the attachments for the Report are ready.

Our questions for Tammy / Paramax include: Are there any Reengineering contracts

as of now? How big are they? How many LOC are involved? What _are the problems

in the other solutions and what are their characteristics?

As far as the actual submission to Paramax is concerned, an invoice is to be sent

under separate cover and should reference the deliverable.

Tammy will be here on Tuesday to help Daniella with the Chart; we will meet

again on Wednesday at 1:30 to make final adjustments; the package will be sent

on Thursday, November 19th, 1992.

The meeting was ended at 10:30 am.



:eliminary Draft" 11/18/92

ATTACHMENT #4

Primary draft of the chart representing the

problems involved by the reengineering process



Chart of the Problem Space for Reengineering

Nov 18, 1992

Legend

r¢oblcm

Decision

Docu,mcm

IX-pen_r_:_ Link

Ahtmativ_ Link

Ju_ i[-le._iirm Link

Omp_l L_nk

Ev_ualc Prec_ Medel,

UF. DHC Rcfin¢_

ii

I Lol (_: _cuvm.r._ _ of ob_..,:_ .t a_iviUrs

}_F "_ / '_' "



tzs

I _acmrmics?

J L ¢od¢ added b}, ._._,-

IRcfmcry P_rocrJ.sModels

o_ _'_-c_,L__
c_ _,oo_,

p'oble.m R_c¢ 1

Tool for uplradln



!

t_.

o_

¢',1

E

Z

r..)

page 1 (1, 1)



i=i
0

'.3. ._

t.",

.8 ._

U

¢,...o

U

O'l

¢'_ 0 I

o _I

0

0

Z

Page 2 (1, 2)
t_



Page 3 (1, 3) blank page



E

P-,

O

_g

o o

r-

i

2
C#'J

PRECEDING PAGE BLANK NOT FILMED Page 4 (2, 1)



1 °

a 0 _ O

¢,

0

0

5

_ .

0

r..)

°_

s
s

I

Page 5 (2, 2)

/



d,

"_ o_

3

f

o

t_
=

0

O5 t_

N

4,)

e-'
0

e-,

0

i

E
_.o
e'-,
0

4.)
(J

(3.
_5

E

,.(3
0 .0

._. -_

/
/

"-G

L

Page 6 (2, 3)



"0
e.,

,..1

"_ _ =

o ._ _n ,...1"o

Page 7 (3, 1)



_1 ""

+_ 4..) 0.3 I
_ I

0

E
,_ _ _ _ I_ ,., ,..., ,

t..+

Q
.+.._

++,o c_

.<

• _I
_..+_

._ i

+

g-

I
I

I "d
18

U

L
- ."7'

C

L

_t
_atll

_t
-- i

t,_ i

J

Page 8 (3, 2)





eliminary Draft: 11/18/92

ATTACHMENT #5

DHC problem and

decision spaces



&&rl reengineering_problem

P: Develop a methodology and supporting tools to port applications from a source

UL: apply_and_improve_DBSD_methodology

DL: porting_problem

DL: translating_problem

DL: enhancing_problem

&&r2 reengineering_process_model

P: Develop a process model for porting,translating and enhancing applications

UL: simple_porting

DL: process model_implementation

DL: process model notations

DL: get_Refinery_process_model

DL: get DHC_process_model_for_Rengineering

DL: combine_DHC&Rfinery_process_models

&&r3 evaluation problem

P: validate the decision in reengineering_problem

UL: simple_porting

DL: logger

DL: statistical analizer

&&r4 logger

P: Log the activities (as defined in process model) of all participants.

UL: evaluation_problem

DL: logging_form_representation

&&r5 statistical analizer

P: Analize the data of the logger

UL: evaluation_problem

DL: analyze_log on Process Model

DL: analyze_log on Unified_Environment

DL: analyze_log_on_DHC

DL: analyze_log_on Refinery

&&r6 apply_process_model to transformation_task

P: a. port a SNAP COBOL program running on a Honeywell to a UNIX box running Micro

b. replace the file operations with an equivalent database language.

UL: simple_porting

DL: demonstrate process
DL: demon's_rate DHC

DL: demonstrate_Refinery
DL: demonstrate Unified Environment

&&w2 Preserve decision structure in AST

P: If refinery is used to transform one source code document into

another, then any decision structure associated with the first

document needs to be transferred to the second.

UL: interface_between_DHC&Refinery

DL: Precision of decision transformation

&&w3 Precision of decision transformation

P: How is the precision of decision structure maintained through the

Refinery transformation. Since the AST is not line oriented, the

decision view don't map one for one on the AST

UL: Preserve decision structure in AST

DL:

&&w4 new_code_added_by_transformation rule

P: How is new code added by transformation rule to be instrumented

for its decision structure? It is possible that this new code solves a

problem of differences between platforms or compilers (an accidental

difference by Fred Brooks classification).

UL: process_model_implementation



DL:

&&w5transformation rule decision views
P: How to record _he decisions Tnvolved with defining the

transformation rules themselves.
UL: process_model_implementation
DL:

&&w6manual after transformation
P: How to support manually processing that occurs after the

transformation. Also how does the programmer understand what the
transformation system has done?

UL: process_model_implementation
DL:

&&r7 tool_for_upgrading_DHC
P: What tool to use for DHC?
UL:upgrade_DHC
DL:

&&r8 robustness of DHC
P: What criteria should we use for choosing a tool for DHC?
UL:
DL:

&&r9 order of objects_editing
P: How to edit 2 objects in order: describe problem and agenda object?
UL:
DL:

&&rl0 insert_agenda_list
P: Insert a problem into the agenda list.
UL: upgrade_DHC
DL:

&&rll modify-agenda-list
P: modify entries of a problem in the agenda list to reflect the status of problel
UL: upgrade_DHC
DL:

&&rl2 entry_definition
P: Entry definition in DHCfiles.
UL: upgrade_DHC_quit
DL:

&&rl3 field definition
P: Identification of fields in an entry in DHCfiles.
UL: upgrade_DHC_quit
DL: empty_field_definition

&&rl4 empty_field_definition
P: Which is the definition of an empty field?
UL: field definition
DL:

&&15 apply_and_improve_DBSD_methodology
P: apply DBSDmethodology to various applications and eventually improve it, as a

&&rl6 long_term_goals
P: Reuse problem, include some AI techniques, etc.
UL: apply_and_improve_DBSD_methodology



DL: reuse_problem.

&&rl7 reuse_problem

P: How to reuse actual solutions from our problem space to solve new problems?

UL: long term_goals

&&rl8 AI_applications

P: Apply some AI methods, techniques to DBSD

UL: long_term_goals

&&rl9 porting_problem

P: porting applications from one machine to another

UL: reengineering_problem

DL: simple_porting

&&r20 enhancing_problem

P: enhancind the features of an application

UL: reengineering_problem

&&r21 translate_problem

P: translate from a language A to another language B, on the same machine

UL: reengineering_problem

&&r22 simple_porting

P: support onlu simple porting from one source machine to a target machine

UL: porting_problem

DL: market_study

DL: reengineering_proces_mode!

DL: CASE_tool_for_reenginerring

DL: apply_process_model to transformation_task

DL: evaluation_problem

&&r23 complex_porting

P: support both porting and reverse porting

UL: porting_problem

&&r24 market_study

P: we need more information from a market study done by the Paramax

personnel to gide our efforts into the direction desired by paramax.

UL: simple_porting

DL: reengineering_contracts&characteristics

DL: reengineering_solutions&characteristics

&&r25 reengineering_contracts&characteristic

P: how many reengineering contracts exist at Paramax and which are their

characteristics?

UL: market_study

&&r26 reengineering_solutions&characteristics

P: what other solutions have been used till now for the reengineering

projects and which are their characteristics

UL: market_study

&&r27 process_model_implementation

P: issues in the actual implementation of the process model of Paramax

UL: reengineering_process model

DL: new_code_added_by_transformation rule

DL:transformation rule decision views

DL: manual after _rans_ormation--

&&r28 notations_for_process_model

P: notations to use in a formal specification of the process model

UL: reengineering_process_model

&&r29 get_Refinery_process_model

P: get the process model for Refinery use in this problem



reengineering_process_model

get DHC_process_model_for_Rengineering
adjust the DHCprocess model to the porting problem

reengineering_process_model

combine_DHC&Refinery_process_models
get the global process model for the porting problem where we have used
the Refinery and DHC

: reengineering_process_model

2 analyze_log on Process_Model
analyze the data obtain with the logging forms on Process Model

,: statistical analizer

33 analyze_log, on Unified Environment

: analyze the data obtain--with the logging forms on Unified Environment

L: statistical analizer

34 analyze_log_on_DHC

: analyze the data obtain with the logging forms on DHC
_'L: statistical analizer

_35 analyze_log_on Refinery

?: analyze the data obtain with the logging forms on Refinery

JL: statistical analizer

r36 demonstrate_process

P: develop a prototype process model of the DHC methodology and the
_vironment

UL: apply_process_model to transformation_task

_r37 demonstrate DHC

P: develop an upgraded DHC prototype to determine the value of DHC

UL: apply_process_model to transformation_task

&r3$ demonstrate_Refinery

P: demonstrate the efficiency of using Refinery for this type of problems

UL: apply_process_model to transformation_task

_&r39 demonstrate Unified Environment

P: demonstrate the utility of building a unified environment fron the

interaction of Refinery and DHC

UL: apply_process_model to transformation_task

&&r40 upgrade_DHC_quit

P: upgrade DHC_quit with the updating of the agenda list

UL: upgrade_DHC

DL: entry_definition

DL: field definition

&&zl logging-form-representation

P:How to represent the login forms?

UL:logger

DL:Iog-PM, Iog-UE, Iog-DHC, log-Refinary

&&z2 log-PM

P:How to represent login form for the porting Process Model?

UL:logging-form-representation

DL:

&&z3 log-UE

P:How to represent login form for the United Environment?

UL:logging-form-representation
DL:



&&z4 Iog-DHC
P:How to represent login form for DHC?
UL:logging-form-representation
DL:

&&z5 log-Refinary
P:How to represent login form for Refinary?
UL:logging-form-representation
DL:

&&z6 CASE-tools

P:What kind of CASE tools will be employed to support the porting?

UL:simple-porting

DL:dhc-refinary-integration

&&z7

&&z8

dhc-refinary-integration

P: How to integrate DHC and Refinary?

UL:CASE-tools

DL:loosely-coupled

loosely-coupled

P:How do we build a loosely coupled system for the porting?

UL:dhc-refinary-integration

DL:Unified-Environment

&&z9

&&zl0

&&zll

Unified-Environment

P:What should we do to build a Unified Environment?

UL:loosely-coupled

DL:upgrade-DHC, understand-Refinary, interface-between-DHC-Refinary

upgrade-DHC

P: How to make DHC more robust and stable enough?
UL:Unified-Environment

DL:decision-views, problem-solving-levels, problem-locating,

conditional-decisions,dhc-evaluation-enhancing, unique-names,

understand-Refinary

P: We should have a good understanding about Refinary before we could

integrate DHC and Refinary.

UL:Unified-Environment

DL:

&&zl2 interface-between-DHC-Refinary

P: How do we build the interface between DHC and Refinary in a

loosely-coupled Unified Environment?

UL:Unified-Environment

DL:

&&zl3

&&zl4

decision-views

P: In porting source-code to another machine (say, A to B), two person

(say the user and the porting engineer) may have different "decision

views" How do we support different decision structures on the same
source code?

UL:upgrade-DHC

UD:view-filtering

view-filtering

P:It should exist the possibility of filtering the views or part

of a view I'm interested to see. We should support view-filtering

for porting engineer, project manager, and other users.
UL:decision-views

DL:

&&zl5 problem-solving-levels

P:How do we support problem-solving at different levels? We should be

able to identify a problem at one level and solving it at another



&&zl6

&&zl7

&&z!8

&&zl9

&&

level (the system's or the user's levels).
UL:upgrade-DHC
DL:

problem-locating
P: In writing down all Problems in the overall Problem Space: do

we face the problem of knowing whether or not this problem has
already been defined in the Problem Space? Is a Problem part of
a larger Problem Structure? Where does it fit into the Problem
Space? It seems that one has to know the entire Problem Space

in order to know where this Problem fits in.

UL:upgrade-DHC

DL:

conditional-decisions

P: Make and keep notes regarding conditional decisions; add to the
DHC code so that we are able to backtrack decisions.

UL: more-dhc-fuctionality

DL:

dhc-evaluation-enhancing

P: How to enhance DHC evaluation methods?

UL:

DL:evaluation-methods

unique-names

P: How to generate unique identities for problems and decisions.

The current practice in dhc is to use the first character of

login name with a number. This is too weak and should be changed.

UL:upgrade-DHC

DL:



&&rl reengineering_problem
AI: Develop a fully automated, non-interactive system for specific cases.

(for example, an Expert System for transforming a COBOLprogram)
A2: Develop an expert system using only DHC.
A3: Develop an interactive system using both DHCand Refinery.
A4: Non-automated system for a specific case. (like "awk")

D: A3) Develop a Reengineering_process model, a running, effective
DHC_prototype, make Refinery part of the environment, and link DHCand
Refinery into a Unified environment.

J: Dictated by :
a. the availability of DHCand Refinery; it will be a matter of evaluation

b. validation of the above decision

UL: reengineering_problem
DL:

C:

&&r2 reengineering_process_model

AI: Develop separate methodologies for:

a. Porting to different dialects of COBOL(e.g. Honeywell to Microfocus)

b. Enhancing applications (e.g. using SQL language instead of file operatiol

c. Translating into another language (e.g. COBOL to Ada)

A2: Develop a general methodology for everything.

D: AI)

J: The process is too little understood to fully develop a general methodology fo:

UL:reengineering_process_model
DL:

C: We assume that the existing application is partially DHC-ed.

&&r3 evaluation_problem

AI: Have separate Logger and Statistical_analyzer for reengineering_process model

A2: Have one for both applications.

D: A2) Develop one Logger and one Statistical_analyzer and apply them to solving
J:

UL: evaluation_problem
DL:

C:

&&r4 logge_

AI: Keep a notebook of activities, tool, feature, time start, end, products (sour,

A2: Collect information by instrumenting DHC, Refinery, project accounts, UNIX.
A3: Combination of 1 and 2.

D: A3)

J:

UL:

DL:

C:

&&r5 statistical analizer

AI: List of features(commands) and their use (frequency, duration).

A2: Size of various parts of documentation (decisions, rules, source code)

A3: Amount of new parts vs. changes in existing ones.

D"

J:

UL:

DL:

C:

&&r6 apply_process_model to transformation_task
A:

D:



j..

UL:

DL:

C:

&&w2 Preserve decision structure in AST

A:

I) Manually reconstruct the decision structure

2) transfer the decision structure into the AST (Abstract

Syntax Tree)

3) semi-automatic match of old and new to transfer
D: A2

J: A1 is too labor intensive, A2 should be possible since

information about the line numbers if available during the parse. In
fact they seem to use this information in linking the AST to the

source code. If the line numbers were kept in the AST, then the
decision views would also be known (LINK to decision to have as the

least granularity of a decision the line).
UL:

DL:

C:

&&w3 Precision of decision transformation

A: I) don't worry about it, the mapping will be close, use whatever
line numbers is available.

2)
D:

J:

UL:

DL:

C: How mush of a problem is this?

Since no decision was made initially, this should remain on the agenda.

&&w4 new code added by transformation rule

A: i) don't add any decisions

2) don't add any but notify the user (keep on the agenda)

3) add from the transformation rule if accidently difference
handled by the rule

4) add decision from the union of the AST of the old

5) same as 4 but only if one view

D: A3 maybe - this is a conditional - need further study
J:

UL:

DL:

C:

&&w5 transformation rule decision views

A: I) don't need to, there aren't that many

2) use DBSD as normally

3) Cross link to transformed system
D:

J:

UL:

DL:

C:

&&w6 manual after transformation

A: I) Use DBSD to record any decisions
D:

J:

UL:

DL:

C:

&&



&&r5 tool for DHC

AI: use Emacs in files .dd, .pd,

A2: create a dedicated editor

.al(agenda list)

D: AI)

J: programming ease
UL:

DL:

C:

&&r6 robustness of DHC

AI: Programming ease.
A2: Robusteness.

D: A1

JUL: tool for DHC

UL:

DL:

C:

_ &&r7 order of objects_editing

AI: write our own interpretor

A2: check consistency every time we use a DHC command

A3: check consistency on exit

" A4: rely on user to be "nice".

D: A3

J: In dhc_quit we check the .dd and .pd files for consistency of the objects.

Check every field and modify in the Agenda Status.
UL:

DL:

C:

&&r8 insert_agenda_list
A:

D: For each problem, put the following entries:

&&<problem-description-name>:

\tDate Entered: <the time when the probelm was entered> ;filled automatically

\tDue Date: <the time when the problem will be solved> ; blank initially

\tResponsible Engineer: <the person responsible for solving this problem> : in_

the person who created the problem

\tPriority: <an integer ranger from 0 to i00, 0 - lowest and i00 - highest>; h

\tStatus: ; Currently there is only the "Empty Fields" sub-entry

\t\tEmpty Fields: <the blank entries of the problem in DHC.pd and DHC.dd> ; al_
\tComments:

J: provide whatever is needed.

UL: describe-problem

UL: make-decision

DL: terminal

C:

&&r9 modify-agenda-list

AI: modify automatically.
A2: let users do it.

D: A2

J: simple, and some entries such as "Priority" can not be set automatically.

UL: insert-agenda-list

DL: terminal

C:

&&rl0 entry_definition

A:



D: an entry starts with "&&"
J: For an easy identification of the entries.
UL:
DL:
C:

rll field definition
A:
D: An entry field begins with TAB@@.
J: For identification purposes.
UL:
DL:
C:

r!2 empty_field_definition

AI: Just a CR.

A2: Without any character.

D: AI- need to be validated later.

J:

UL:

DL:

"C:

&zl logging-form-representation

A:i). a form of the process model and checkout the steps

that i am doing.

2). a list of the terminal activities from the process

model. In this case I loose the sequence of activities

and the objects on which I do the activities.

D:

J:

C: The form we need should state the activities, the time

spent on each of them, the order of activities.

&z6 CASE-tools

A:l)use DHC alone;

2)use Refinary alone;

3)use both DHC and Refinary;

4)Use other tools.

D:We choose the third alternative.

J:

C:

:&z7 dhc-refinary-integration

A: I) make them loosely coupled, seeing each other like a black box

that executes its job sequential in time with respect to the

other tool.

2) make them tightly coupled.
D:

J:

C:For a tightly coupled version we will need to embed DHC in Refinery,

to consider each of the Refinery functions as black boxes and wrap

them in DHC functions, if they are sufficiently small. Also we would

need that this functions be noninteractive so that we can have the

control of the user actions at the DHC level. For this we would need

a deep understanding of the source of Refinery, to figure out how

to make the link with DHC. We would need from Paramax a detailed

list of capabilities and functions of Refinery.

_&zl3 decision-views

A: We do not wish to have several operations active at the same time;

i.e., only when the code is completely ported to the target machine

then is it turn over to the user (from porter's view to the user's

view).

D:

J:



UL:

UD :

C:

&&



Preliminary Draft: 11/18/92

ATTACHMENT #6

Process model for traditional life cycle of

software notations specific to DHC



-5-

Notations

--> - is defined as

Capital - a label for a subspace of the process modeJ space - an intermediate symbol

- a set of activities done often enough to merit its own name.

lower - name of an object either needed for an activity or produced by an activity;,

> - indicates data (object) flow (input or output)

Capital_ - subs is the person normally engaged in this activity

boldlower - functionality available in DHC or process model

[ ] - repeat 0 or 1 time

( } - repeat 0 or more times

I- alternate paths in subspace

activity tllactivity 2 - activities which can be done in parallel

activity L "blank" activity2 - activities which are clone in sequence

( ) - used for grouping, but does not assign an intermediate name to it.

/*comment*/- can be used anywhere in process model to help explain

name:object - names an instant of an object in the process model

V{objects} > Activity - perform activity for a]l objects in set in random order



-o-

Process Model Objects

Softwarc= {lines of source codc}

Documcnmtion= (problcm_spacc, decision_sct, documcnts, justification_relation, dcpcndcncy_rclation,
decision_rclation, altcrnatcrclation, task_relation, dcscription_rclation, vicw_rclation)

Documcnts= (rcquircments, specification, design, source)

Alternate_relation = (problem x problem)

Justification_rclation = (problem x problcm)

View relation = (problem x document)

Dcpcndcncy_rclation =(problcm x problcm)

Dccision_rclation = (problem x decision)

Task_relation = (problem x task_problcm)

Description_relation = (,problem x problcm_description)

Works_with_rclation = ((manager,task), (software_enginccr, problem))

Problem_space = {problem]

Decision_set = {decision}

System = (software, documentation)

Environment = {DHC}

Schedule = [(task, problem, person, status, priority)}

Agenda = {(problem, progress information) }

Session = docurnentation_,,.6_,_,a-docurnentation_,,,,i._

Problem_description = ((description, alternates, decision, justification), attributes: (abstraction_lcvd,
generic, user_filter, size, reusc..list)),

/* generic: a node in generic if it is contained in all alternatives of its father*/

/* user_filter: used to create user defined filter*/

/* notes: are created during the understanding and assessment phase*/

Size = (# problem, # LOC, # documentation, # filter (documentation))



-7-

Task problem = (problem, (muse_list, generic_list, out_list, modify_list, ncw_lisO
risk, effort, lower bound: size, upper bound: size)]

/* task is a request from either the customcr or the manager to change some aspcct of the extcrnaJly obscrvable
behnvior of d_o sys_m. Adaptive lasi¢ • ¢||ango u rOclUJronlonl: p<Jrl"_lJvo rusk . ehmnse deel_l|on In a problem,
corrcclJvc Izqk - changc ._oftwarc and/or documcntation of a prol_lcm nodc whosc solution is incorrccL It is

rcprc.scntcd by a probicm_dcscription*/

Pcrsons = 0VIAnagcr, SOftwarc_cnginccr, CUstomcr)

Report = {lines of cxt}

Mccting_notcs = {lincs of tcxt}



-8-

Process Model for Traditional Life C_;cle

Detailed Description

Externalcustomer_requirement_resolutioncu --> taskcu > (Softwaredevelopment

I ICustomer_feedback) > system

lnternal..perfection_and_correctioncu.M,_ -> task.cu._A > Software_development >

system

Software_development --> task > (UnderstandingMA

UnderstandingsE) >/*requirements_definition*/task_root: task_problem

/*list_ofreusables candidates*/ {problem},

Taskproblem_solving >/*first_level_decomposition*/ {taskproblem},

{AssessrnentMA.sE > (task_root, effort, task_root.size, task_rooLrisk) Change_task_decision > task_root}

Assign_resources > schedule

Transfer..task_to_.problem_space > agenda

{agenda; schedule > Solve..problemse > agenda

Review_meeting > meeting_notes
Implementmeeting_decision > schedule, agenda}

UnderstandingMA.se --> Exploring II add_to_reportM,_.sE >repon

Exploring --> Requirements_definition 11Reusability_search

Requirements.definition --> (keywords > locate_problem > relevant_nodes: [problem},

make_new_requirement) > task_root_problem

V relevant nodes > Understandproblem

Understand_problem --> problem >{(Visit_node dependency_up > problem)
I terminate at node closure relevant nodes

I hack}

/*exploration*/(justification_from > problem

I justification_to > problem

[ dependency_up > problem

I dependency_down > problem)

Visit_node --> problem > read_description document_view Read_document Read. justification

Read_document --> {(switch_view/* special view: file view */I problem I decision I

back I scroll_view I emacs_commands)}

Read.justification --> V {justification_to & justification_from} (read_description I Visit_node)



Task_problem_solving --> task root > (V node _ relevantnodes) (Modify_existing_node > {task_.problem}
{taskroot > Createadditionainew_task > task_.problem })

Modify_existing_node --> node > create task_problem > task_problem, task relation

tag_suhproblems Mod_y_.problem_node

Modify_problem_node --> node, task_problem > {Addnew feature I Delete old feature
-- -- Q

I Change old feature I Copy_generic

I Add_reuse/* for all nodes on reuse list}

Add_new_feature --> node, task_problem > change-description add..justification

create_new_task_.problem
add to new list

Delete old feature--> add to out list

Change old feature --> node, task_problem > change_description adjust..justification

create_new_task_problem > modify_node, modify_task_problem >
Modify_problem_node
/* stop decomposition of modification at point where it is possible to estimate size */

add to modify_list

Copy_generic --> change_description adjust justifications copy_new_generic_task__problem add_to_generic_list

Add_muse --> change_description adjust..justification adjust_reuse_task_problem add to reuse_list

Create_additional_new_tasks --> create_new_task_problem

Firstlevel_decomposition > task_problem

First_level_decomposition--> taskproblem > {create_new-lask_problem add to new_llst}

/* create decomposition problem nodes for each task problem node and tag (create a list o0 them as generic: to be
used in all alternative solutions, out: not to be used in the new task, reuse: to be used with minor modification, new:

a new feature is to be added to the original solution, modify: one or more subproblems have to be added, deleted, or

changed */

Assessment --> Calculate_Direct_Effect Calculate_Indirect_Cost Review_DataMA

Calculate_Direct_Effect --> (V task e {task_problcm})(V task_node e task.generic n task.out c_ task.reuse)

calculate_node_size calculaterisk_effort > {task_node}

(V task_node e new) effortse, risksE > get_effort_risk_size estimates > {task_node}

(V task_node e modify) Assessment > {task_node}

{task_node} > calculate_task_problem_size > task
/* for each category add the number in the subproblem nodes to obtain the relevant figures in the task problem node*/

[task_node} > calculate_task problem_effort > task

/* this is the sum of the efforts in the subproblem list °/

{task_node} > calculate_task_problem_risk > task
/* the sum of the risks in the subproblem nodes */



-10-

{task} > add_up_direct_costs > task_root

Calculate_Indirect_Cost -> relevantnode > get_ciosure_llst_,justification_to_from > tipple_list: {problem}

(]* get the worst possible impact by calculating the transitive impact closure for the justification limits */

V (node _ tipple..list) calculate_total_node_size > {task_.probicm.upper_bound}

/* add up all the metrics, # problems, #LOCS, etc, for all the nodes in the closure */

/* allow for interactive estimates */

I(V node ¢ ripple_list) (read_description (calculate_total_node.size Iskip)) > {taskproblem_lower_bound}

,/* add only selected nodes to the calculation */

{task..problem} > add_up_indirect_cost > task_root

Review_Data --> {({relevant_node}, {task_problem }, task_root, ripple_list) > Pick_node read_description }

Pick_node --> dependency_up I dependency_down l justification_to Ijustification_from I task

Reusability_search --> add_reusable_node > task problem.reuse_list

/* during exploration when finding candidate for reuse, add to reuse list of relevant node

which is first in up chain of node in questions */

Change_task_decision --> {task..problem > delete_task_problem > node
(node > Modify_existing_node I task_.problem > Create_additional_new_task) > taskproblem}

/* delete a task problem and all its descendants and replace it with an alternate solution

to the relevant node in the problem space or with an altogether new task node*/

Create_additional_new_task --> task_root > Make_node > taskproblem

Make_node --> node > create_new_problem_node > new_node > Add_info_to_node > new_node

Add_info_to_node --> (fill in description Ilink..justification I make_decision Iwrite_and_link_documentation)

Assign_resources --> produce_scheduleM,_ > schedule

/* it is left to the managing system used to derive schedule from assessment data*/

Transfer_task._problem_space_to_task_root --> task_root > transfer_tentative_to__problemspace > task:problem, agenda,
visible alternative

/* transfer all task problems and their sub problems to the problem space, removing existing problems, documenta-

tion, source code which are to be modified but saving them on an alternative list for possible reuse. All new prob-

lems are added to the problem space. All incomplete problem nodes are added to the agenda. */

Solve_problem --> agenda > take_agenda_problem > node:problem
Add info to node

{Make_node-> new_node Solve_problem}

Adjustagenda > agenda, report



-11-
o.

/* any incomplete node has to be added to agenda and those completed can be taken off (to be saved in report) */

Iladd to reportse, MA > report

/* notes on activities are added to a report */

I research.problemssE, MA > report

/* research needed to solve problems or prepare for the review meeting are done according to whatever system is

prescribed and results in knowledge how to proceed with the Solve_problem activities or in a report for a meeting.
This includes preparing a print-out of differences in decision graph, source and documentation. */

Review_meeting--> (Review_reports {(Generate_problems I Make_decision)} Review_progress)
Iladd to notess_.ua > meeting_notes

Review_reports --> (review_report MA.SEIreview_agenda M,_.se I review__hedule MA.SE)

Generate._problems --> {describe_problems sE I describe_alternatives sn I give_justifications st. }

Make_decisions --> {unconditional_decisions SE,UA I conditional_decisions sE,ua }

Implement_meetingdecisions --> {Changedecision I Add_unconditional_decision I Add_conditional_decision I
Add_problem }

Change_decision --> locate decision delete_problem > node
/*node is the parem of the problem deleted */
Make node > new node

m

Add _nfo to node > new node

Adjust_agenda > agenda

Add_unconditional-decision --> Iocate_decislon Adjust_agenda > agenda Add_info_to_node

Add_conditional_decision -> locate_decision Add_info_to_node get_parent_node > node
Make node > new node

/* create problem node for instrumentation problem */
Add info to node

Adjustagenda > agenda

Add__problem --> locate_parent > node

/* find the place in the problem space where this problem should go */
Make node > new node
Add mfo to node-

Adjustagenda > agenda

Adjust_agenda --> add_agendaproblem I delete_agenda_problem I modify_agenda_.problem



Preliminary Draft: 11/18/92

ATTACHMENT #7

Logging form



1

1

1

!

1

I

]

l

l

i

l

I

Tool Used

I

Activity Performed Features Used Start Time End Time Product


